Step |
Hyp |
Ref |
Expression |
1 |
|
omopthlem1.1 |
|- A e. _om |
2 |
|
omopthlem1.2 |
|- C e. _om |
3 |
|
peano2 |
|- ( A e. _om -> suc A e. _om ) |
4 |
1 3
|
ax-mp |
|- suc A e. _om |
5 |
|
nnmwordi |
|- ( ( suc A e. _om /\ C e. _om /\ suc A e. _om ) -> ( suc A C_ C -> ( suc A .o suc A ) C_ ( suc A .o C ) ) ) |
6 |
4 2 4 5
|
mp3an |
|- ( suc A C_ C -> ( suc A .o suc A ) C_ ( suc A .o C ) ) |
7 |
|
nnmwordri |
|- ( ( suc A e. _om /\ C e. _om /\ C e. _om ) -> ( suc A C_ C -> ( suc A .o C ) C_ ( C .o C ) ) ) |
8 |
4 2 2 7
|
mp3an |
|- ( suc A C_ C -> ( suc A .o C ) C_ ( C .o C ) ) |
9 |
6 8
|
sstrd |
|- ( suc A C_ C -> ( suc A .o suc A ) C_ ( C .o C ) ) |
10 |
1
|
nnoni |
|- A e. On |
11 |
2
|
nnoni |
|- C e. On |
12 |
10 11
|
onsucssi |
|- ( A e. C <-> suc A C_ C ) |
13 |
1 1
|
nnmcli |
|- ( A .o A ) e. _om |
14 |
|
2onn |
|- 2o e. _om |
15 |
1 14
|
nnmcli |
|- ( A .o 2o ) e. _om |
16 |
13 15
|
nnacli |
|- ( ( A .o A ) +o ( A .o 2o ) ) e. _om |
17 |
16
|
nnoni |
|- ( ( A .o A ) +o ( A .o 2o ) ) e. On |
18 |
2 2
|
nnmcli |
|- ( C .o C ) e. _om |
19 |
18
|
nnoni |
|- ( C .o C ) e. On |
20 |
17 19
|
onsucssi |
|- ( ( ( A .o A ) +o ( A .o 2o ) ) e. ( C .o C ) <-> suc ( ( A .o A ) +o ( A .o 2o ) ) C_ ( C .o C ) ) |
21 |
4 1
|
nnmcli |
|- ( suc A .o A ) e. _om |
22 |
|
nnasuc |
|- ( ( ( suc A .o A ) e. _om /\ A e. _om ) -> ( ( suc A .o A ) +o suc A ) = suc ( ( suc A .o A ) +o A ) ) |
23 |
21 1 22
|
mp2an |
|- ( ( suc A .o A ) +o suc A ) = suc ( ( suc A .o A ) +o A ) |
24 |
|
nnmsuc |
|- ( ( suc A e. _om /\ A e. _om ) -> ( suc A .o suc A ) = ( ( suc A .o A ) +o suc A ) ) |
25 |
4 1 24
|
mp2an |
|- ( suc A .o suc A ) = ( ( suc A .o A ) +o suc A ) |
26 |
|
nnaass |
|- ( ( ( A .o A ) e. _om /\ A e. _om /\ A e. _om ) -> ( ( ( A .o A ) +o A ) +o A ) = ( ( A .o A ) +o ( A +o A ) ) ) |
27 |
13 1 1 26
|
mp3an |
|- ( ( ( A .o A ) +o A ) +o A ) = ( ( A .o A ) +o ( A +o A ) ) |
28 |
|
nnmcom |
|- ( ( suc A e. _om /\ A e. _om ) -> ( suc A .o A ) = ( A .o suc A ) ) |
29 |
4 1 28
|
mp2an |
|- ( suc A .o A ) = ( A .o suc A ) |
30 |
|
nnmsuc |
|- ( ( A e. _om /\ A e. _om ) -> ( A .o suc A ) = ( ( A .o A ) +o A ) ) |
31 |
1 1 30
|
mp2an |
|- ( A .o suc A ) = ( ( A .o A ) +o A ) |
32 |
29 31
|
eqtri |
|- ( suc A .o A ) = ( ( A .o A ) +o A ) |
33 |
32
|
oveq1i |
|- ( ( suc A .o A ) +o A ) = ( ( ( A .o A ) +o A ) +o A ) |
34 |
|
nnm2 |
|- ( A e. _om -> ( A .o 2o ) = ( A +o A ) ) |
35 |
1 34
|
ax-mp |
|- ( A .o 2o ) = ( A +o A ) |
36 |
35
|
oveq2i |
|- ( ( A .o A ) +o ( A .o 2o ) ) = ( ( A .o A ) +o ( A +o A ) ) |
37 |
27 33 36
|
3eqtr4ri |
|- ( ( A .o A ) +o ( A .o 2o ) ) = ( ( suc A .o A ) +o A ) |
38 |
|
suceq |
|- ( ( ( A .o A ) +o ( A .o 2o ) ) = ( ( suc A .o A ) +o A ) -> suc ( ( A .o A ) +o ( A .o 2o ) ) = suc ( ( suc A .o A ) +o A ) ) |
39 |
37 38
|
ax-mp |
|- suc ( ( A .o A ) +o ( A .o 2o ) ) = suc ( ( suc A .o A ) +o A ) |
40 |
23 25 39
|
3eqtr4ri |
|- suc ( ( A .o A ) +o ( A .o 2o ) ) = ( suc A .o suc A ) |
41 |
40
|
sseq1i |
|- ( suc ( ( A .o A ) +o ( A .o 2o ) ) C_ ( C .o C ) <-> ( suc A .o suc A ) C_ ( C .o C ) ) |
42 |
20 41
|
bitri |
|- ( ( ( A .o A ) +o ( A .o 2o ) ) e. ( C .o C ) <-> ( suc A .o suc A ) C_ ( C .o C ) ) |
43 |
9 12 42
|
3imtr4i |
|- ( A e. C -> ( ( A .o A ) +o ( A .o 2o ) ) e. ( C .o C ) ) |