Step |
Hyp |
Ref |
Expression |
1 |
|
omord2 |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B <-> ( C .o A ) e. ( C .o B ) ) ) |
2 |
1
|
ex |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C -> ( A e. B <-> ( C .o A ) e. ( C .o B ) ) ) ) |
3 |
2
|
pm5.32rd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ (/) e. C ) <-> ( ( C .o A ) e. ( C .o B ) /\ (/) e. C ) ) ) |
4 |
|
simpl |
|- ( ( ( C .o A ) e. ( C .o B ) /\ (/) e. C ) -> ( C .o A ) e. ( C .o B ) ) |
5 |
|
ne0i |
|- ( ( C .o A ) e. ( C .o B ) -> ( C .o B ) =/= (/) ) |
6 |
|
om0r |
|- ( B e. On -> ( (/) .o B ) = (/) ) |
7 |
|
oveq1 |
|- ( C = (/) -> ( C .o B ) = ( (/) .o B ) ) |
8 |
7
|
eqeq1d |
|- ( C = (/) -> ( ( C .o B ) = (/) <-> ( (/) .o B ) = (/) ) ) |
9 |
6 8
|
syl5ibrcom |
|- ( B e. On -> ( C = (/) -> ( C .o B ) = (/) ) ) |
10 |
9
|
necon3d |
|- ( B e. On -> ( ( C .o B ) =/= (/) -> C =/= (/) ) ) |
11 |
5 10
|
syl5 |
|- ( B e. On -> ( ( C .o A ) e. ( C .o B ) -> C =/= (/) ) ) |
12 |
11
|
adantr |
|- ( ( B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) -> C =/= (/) ) ) |
13 |
|
on0eln0 |
|- ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) |
14 |
13
|
adantl |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. C <-> C =/= (/) ) ) |
15 |
12 14
|
sylibrd |
|- ( ( B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) -> (/) e. C ) ) |
16 |
15
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) -> (/) e. C ) ) |
17 |
16
|
ancld |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) -> ( ( C .o A ) e. ( C .o B ) /\ (/) e. C ) ) ) |
18 |
4 17
|
impbid2 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( ( C .o A ) e. ( C .o B ) /\ (/) e. C ) <-> ( C .o A ) e. ( C .o B ) ) ) |
19 |
3 18
|
bitrd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ (/) e. C ) <-> ( C .o A ) e. ( C .o B ) ) ) |