Description: Ordering involving the product of a limit ordinal. Proposition 8.23 of TakeutiZaring p. 64. (Contributed by NM, 25-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | omordlim | |- ( ( ( A e. On /\ ( B e. D /\ Lim B ) ) /\ C e. ( A .o B ) ) -> E. x e. B C e. ( A .o x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlim | |- ( ( A e. On /\ ( B e. D /\ Lim B ) ) -> ( A .o B ) = U_ x e. B ( A .o x ) ) |
|
2 | 1 | eleq2d | |- ( ( A e. On /\ ( B e. D /\ Lim B ) ) -> ( C e. ( A .o B ) <-> C e. U_ x e. B ( A .o x ) ) ) |
3 | eliun | |- ( C e. U_ x e. B ( A .o x ) <-> E. x e. B C e. ( A .o x ) ) |
|
4 | 2 3 | bitrdi | |- ( ( A e. On /\ ( B e. D /\ Lim B ) ) -> ( C e. ( A .o B ) <-> E. x e. B C e. ( A .o x ) ) ) |
5 | 4 | biimpa | |- ( ( ( A e. On /\ ( B e. D /\ Lim B ) ) /\ C e. ( A .o B ) ) -> E. x e. B C e. ( A .o x ) ) |