| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omsinds.1 |
|- ( x = y -> ( ph <-> ps ) ) |
| 2 |
|
omsinds.2 |
|- ( x = A -> ( ph <-> ch ) ) |
| 3 |
|
omsinds.3 |
|- ( x e. _om -> ( A. y e. x ps -> ph ) ) |
| 4 |
|
omsson |
|- _om C_ On |
| 5 |
|
epweon |
|- _E We On |
| 6 |
|
wess |
|- ( _om C_ On -> ( _E We On -> _E We _om ) ) |
| 7 |
4 5 6
|
mp2 |
|- _E We _om |
| 8 |
|
epse |
|- _E Se _om |
| 9 |
|
trom |
|- Tr _om |
| 10 |
|
trpred |
|- ( ( Tr _om /\ x e. _om ) -> Pred ( _E , _om , x ) = x ) |
| 11 |
9 10
|
mpan |
|- ( x e. _om -> Pred ( _E , _om , x ) = x ) |
| 12 |
11
|
raleqdv |
|- ( x e. _om -> ( A. y e. Pred ( _E , _om , x ) ps <-> A. y e. x ps ) ) |
| 13 |
12 3
|
sylbid |
|- ( x e. _om -> ( A. y e. Pred ( _E , _om , x ) ps -> ph ) ) |
| 14 |
7 8 1 2 13
|
wfis3 |
|- ( A e. _om -> ch ) |