Step |
Hyp |
Ref |
Expression |
1 |
|
omsinds.1 |
|- ( x = y -> ( ph <-> ps ) ) |
2 |
|
omsinds.2 |
|- ( x = A -> ( ph <-> ch ) ) |
3 |
|
omsinds.3 |
|- ( x e. _om -> ( A. y e. x ps -> ph ) ) |
4 |
|
omsson |
|- _om C_ On |
5 |
|
epweon |
|- _E We On |
6 |
|
wess |
|- ( _om C_ On -> ( _E We On -> _E We _om ) ) |
7 |
4 5 6
|
mp2 |
|- _E We _om |
8 |
|
epse |
|- _E Se _om |
9 |
|
predep |
|- ( x e. _om -> Pred ( _E , _om , x ) = ( _om i^i x ) ) |
10 |
|
ordom |
|- Ord _om |
11 |
|
ordtr |
|- ( Ord _om -> Tr _om ) |
12 |
|
trss |
|- ( Tr _om -> ( x e. _om -> x C_ _om ) ) |
13 |
10 11 12
|
mp2b |
|- ( x e. _om -> x C_ _om ) |
14 |
|
sseqin2 |
|- ( x C_ _om <-> ( _om i^i x ) = x ) |
15 |
13 14
|
sylib |
|- ( x e. _om -> ( _om i^i x ) = x ) |
16 |
9 15
|
eqtrd |
|- ( x e. _om -> Pred ( _E , _om , x ) = x ) |
17 |
16
|
raleqdv |
|- ( x e. _om -> ( A. y e. Pred ( _E , _om , x ) ps <-> A. y e. x ps ) ) |
18 |
17 3
|
sylbid |
|- ( x e. _om -> ( A. y e. Pred ( _E , _om , x ) ps -> ph ) ) |
19 |
7 8 1 2 18
|
wfis3 |
|- ( A e. _om -> ch ) |