Description: Omega is a subset of On . (Contributed by NM, 13-Jun-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | omsson | |- _om C_ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-om | |- _om = { x e. On | A. y ( Lim y -> x e. y ) } |
|
2 | 1 | ssrab3 | |- _om C_ On |