Step |
Hyp |
Ref |
Expression |
1 |
|
omord2 |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B <-> ( C .o A ) e. ( C .o B ) ) ) |
2 |
|
3anrot |
|- ( ( C e. On /\ A e. On /\ B e. On ) <-> ( A e. On /\ B e. On /\ C e. On ) ) |
3 |
|
omcan |
|- ( ( ( C e. On /\ A e. On /\ B e. On ) /\ (/) e. C ) -> ( ( C .o A ) = ( C .o B ) <-> A = B ) ) |
4 |
2 3
|
sylanbr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( C .o A ) = ( C .o B ) <-> A = B ) ) |
5 |
4
|
bicomd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A = B <-> ( C .o A ) = ( C .o B ) ) ) |
6 |
1 5
|
orbi12d |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( A e. B \/ A = B ) <-> ( ( C .o A ) e. ( C .o B ) \/ ( C .o A ) = ( C .o B ) ) ) ) |
7 |
|
onsseleq |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
8 |
7
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
9 |
8
|
adantr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
10 |
|
omcl |
|- ( ( C e. On /\ A e. On ) -> ( C .o A ) e. On ) |
11 |
|
omcl |
|- ( ( C e. On /\ B e. On ) -> ( C .o B ) e. On ) |
12 |
10 11
|
anim12dan |
|- ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C .o A ) e. On /\ ( C .o B ) e. On ) ) |
13 |
12
|
ancoms |
|- ( ( ( A e. On /\ B e. On ) /\ C e. On ) -> ( ( C .o A ) e. On /\ ( C .o B ) e. On ) ) |
14 |
13
|
3impa |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) e. On /\ ( C .o B ) e. On ) ) |
15 |
|
onsseleq |
|- ( ( ( C .o A ) e. On /\ ( C .o B ) e. On ) -> ( ( C .o A ) C_ ( C .o B ) <-> ( ( C .o A ) e. ( C .o B ) \/ ( C .o A ) = ( C .o B ) ) ) ) |
16 |
14 15
|
syl |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) C_ ( C .o B ) <-> ( ( C .o A ) e. ( C .o B ) \/ ( C .o A ) = ( C .o B ) ) ) ) |
17 |
16
|
adantr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( C .o A ) C_ ( C .o B ) <-> ( ( C .o A ) e. ( C .o B ) \/ ( C .o A ) = ( C .o B ) ) ) ) |
18 |
6 9 17
|
3bitr4d |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B <-> ( C .o A ) C_ ( C .o B ) ) ) |