Metamath Proof Explorer


Theorem omword2

Description: An ordinal is less than or equal to its product with another. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion omword2
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( B .o A ) )

Proof

Step Hyp Ref Expression
1 om1r
 |-  ( A e. On -> ( 1o .o A ) = A )
2 1 ad2antrr
 |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o .o A ) = A )
3 eloni
 |-  ( B e. On -> Ord B )
4 ordgt0ge1
 |-  ( Ord B -> ( (/) e. B <-> 1o C_ B ) )
5 4 biimpa
 |-  ( ( Ord B /\ (/) e. B ) -> 1o C_ B )
6 3 5 sylan
 |-  ( ( B e. On /\ (/) e. B ) -> 1o C_ B )
7 6 adantll
 |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> 1o C_ B )
8 1on
 |-  1o e. On
9 omwordri
 |-  ( ( 1o e. On /\ B e. On /\ A e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) )
10 8 9 mp3an1
 |-  ( ( B e. On /\ A e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) )
11 10 ancoms
 |-  ( ( A e. On /\ B e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) )
12 11 adantr
 |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) )
13 7 12 mpd
 |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o .o A ) C_ ( B .o A ) )
14 2 13 eqsstrrd
 |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( B .o A ) )