Step |
Hyp |
Ref |
Expression |
1 |
|
omword |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B <-> ( C .o A ) C_ ( C .o B ) ) ) |
2 |
1
|
biimpd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) |
3 |
2
|
ex |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) ) |
4 |
|
eloni |
|- ( C e. On -> Ord C ) |
5 |
|
ord0eln0 |
|- ( Ord C -> ( (/) e. C <-> C =/= (/) ) ) |
6 |
5
|
necon2bbid |
|- ( Ord C -> ( C = (/) <-> -. (/) e. C ) ) |
7 |
4 6
|
syl |
|- ( C e. On -> ( C = (/) <-> -. (/) e. C ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C = (/) <-> -. (/) e. C ) ) |
9 |
|
ssid |
|- (/) C_ (/) |
10 |
|
om0r |
|- ( A e. On -> ( (/) .o A ) = (/) ) |
11 |
10
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( (/) .o A ) = (/) ) |
12 |
|
om0r |
|- ( B e. On -> ( (/) .o B ) = (/) ) |
13 |
12
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( (/) .o B ) = (/) ) |
14 |
11 13
|
sseq12d |
|- ( ( A e. On /\ B e. On ) -> ( ( (/) .o A ) C_ ( (/) .o B ) <-> (/) C_ (/) ) ) |
15 |
9 14
|
mpbiri |
|- ( ( A e. On /\ B e. On ) -> ( (/) .o A ) C_ ( (/) .o B ) ) |
16 |
|
oveq1 |
|- ( C = (/) -> ( C .o A ) = ( (/) .o A ) ) |
17 |
|
oveq1 |
|- ( C = (/) -> ( C .o B ) = ( (/) .o B ) ) |
18 |
16 17
|
sseq12d |
|- ( C = (/) -> ( ( C .o A ) C_ ( C .o B ) <-> ( (/) .o A ) C_ ( (/) .o B ) ) ) |
19 |
15 18
|
syl5ibrcom |
|- ( ( A e. On /\ B e. On ) -> ( C = (/) -> ( C .o A ) C_ ( C .o B ) ) ) |
20 |
19
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C = (/) -> ( C .o A ) C_ ( C .o B ) ) ) |
21 |
8 20
|
sylbird |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. (/) e. C -> ( C .o A ) C_ ( C .o B ) ) ) |
22 |
21
|
a1dd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. (/) e. C -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) ) |
23 |
3 22
|
pm2.61d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) |