Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( A e. On -> Ord A ) |
|
| 2 | ord0eln0 | |- ( Ord A -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |