Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | |- ( A e. On -> Ord A ) |
|
2 | ord0eln0 | |- ( Ord A -> ( (/) e. A <-> A =/= (/) ) ) |
|
3 | 1 2 | syl | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |