| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ss |  |-  (/) C_ A | 
						
							| 2 |  | 0elon |  |-  (/) e. On | 
						
							| 3 |  | onsseleq |  |-  ( ( (/) e. On /\ A e. On ) -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) ) | 
						
							| 4 | 2 3 | mpan |  |-  ( A e. On -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) ) | 
						
							| 5 | 1 4 | mpbii |  |-  ( A e. On -> ( (/) e. A \/ (/) = A ) ) | 
						
							| 6 |  | eqcom |  |-  ( (/) = A <-> A = (/) ) | 
						
							| 7 | 6 | orbi2i |  |-  ( ( (/) e. A \/ (/) = A ) <-> ( (/) e. A \/ A = (/) ) ) | 
						
							| 8 |  | orcom |  |-  ( ( (/) e. A \/ A = (/) ) <-> ( A = (/) \/ (/) e. A ) ) | 
						
							| 9 | 7 8 | bitri |  |-  ( ( (/) e. A \/ (/) = A ) <-> ( A = (/) \/ (/) e. A ) ) | 
						
							| 10 | 5 9 | sylib |  |-  ( A e. On -> ( A = (/) \/ (/) e. A ) ) |