| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enrefg |  |-  ( A e. On -> A ~~ A ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. On /\ B e. On ) -> A ~~ A ) | 
						
							| 3 |  | simpr |  |-  ( ( A e. On /\ B e. On ) -> B e. On ) | 
						
							| 4 |  | eqid |  |-  ( x e. B |-> ( A +o x ) ) = ( x e. B |-> ( A +o x ) ) | 
						
							| 5 | 4 | oacomf1olem |  |-  ( ( B e. On /\ A e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) | 
						
							| 6 | 5 | ancoms |  |-  ( ( A e. On /\ B e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) | 
						
							| 7 | 6 | simpld |  |-  ( ( A e. On /\ B e. On ) -> ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) | 
						
							| 8 |  | f1oeng |  |-  ( ( B e. On /\ ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) -> B ~~ ran ( x e. B |-> ( A +o x ) ) ) | 
						
							| 9 | 3 7 8 | syl2anc |  |-  ( ( A e. On /\ B e. On ) -> B ~~ ran ( x e. B |-> ( A +o x ) ) ) | 
						
							| 10 |  | incom |  |-  ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = ( ran ( x e. B |-> ( A +o x ) ) i^i A ) | 
						
							| 11 | 6 | simprd |  |-  ( ( A e. On /\ B e. On ) -> ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) | 
						
							| 12 | 10 11 | eqtrid |  |-  ( ( A e. On /\ B e. On ) -> ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) | 
						
							| 13 |  | djuenun |  |-  ( ( A ~~ A /\ B ~~ ran ( x e. B |-> ( A +o x ) ) /\ ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) -> ( A |_| B ) ~~ ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) | 
						
							| 14 | 2 9 12 13 | syl3anc |  |-  ( ( A e. On /\ B e. On ) -> ( A |_| B ) ~~ ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) | 
						
							| 15 |  | oarec |  |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) | 
						
							| 16 | 14 15 | breqtrrd |  |-  ( ( A e. On /\ B e. On ) -> ( A |_| B ) ~~ ( A +o B ) ) | 
						
							| 17 | 16 | ensymd |  |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) ~~ ( A |_| B ) ) |