| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frsuc |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) ) |
| 2 |
1
|
adantl |
|- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) ) |
| 3 |
|
peano2 |
|- ( B e. _om -> suc B e. _om ) |
| 4 |
3
|
adantl |
|- ( ( A e. On /\ B e. _om ) -> suc B e. _om ) |
| 5 |
4
|
fvresd |
|- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
| 6 |
|
fvres |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
| 7 |
6
|
adantl |
|- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
| 8 |
7
|
fveq2d |
|- ( ( A e. On /\ B e. _om ) -> ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
| 9 |
2 5 8
|
3eqtr3d |
|- ( ( A e. On /\ B e. _om ) -> ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
| 10 |
|
nnon |
|- ( B e. _om -> B e. On ) |
| 11 |
|
onsuc |
|- ( B e. On -> suc B e. On ) |
| 12 |
10 11
|
syl |
|- ( B e. _om -> suc B e. On ) |
| 13 |
|
oav |
|- ( ( A e. On /\ suc B e. On ) -> ( A +o suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
| 14 |
12 13
|
sylan2 |
|- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
| 15 |
|
ovex |
|- ( A +o B ) e. _V |
| 16 |
|
suceq |
|- ( x = ( A +o B ) -> suc x = suc ( A +o B ) ) |
| 17 |
|
eqid |
|- ( x e. _V |-> suc x ) = ( x e. _V |-> suc x ) |
| 18 |
15
|
sucex |
|- suc ( A +o B ) e. _V |
| 19 |
16 17 18
|
fvmpt |
|- ( ( A +o B ) e. _V -> ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = suc ( A +o B ) ) |
| 20 |
15 19
|
ax-mp |
|- ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = suc ( A +o B ) |
| 21 |
|
oav |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
| 22 |
10 21
|
sylan2 |
|- ( ( A e. On /\ B e. _om ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
| 23 |
22
|
fveq2d |
|- ( ( A e. On /\ B e. _om ) -> ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
| 24 |
20 23
|
eqtr3id |
|- ( ( A e. On /\ B e. _om ) -> suc ( A +o B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
| 25 |
9 14 24
|
3eqtr4d |
|- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |