Step |
Hyp |
Ref |
Expression |
1 |
|
frsuc |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) ) |
2 |
1
|
adantl |
|- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) ) |
3 |
|
peano2 |
|- ( B e. _om -> suc B e. _om ) |
4 |
3
|
adantl |
|- ( ( A e. On /\ B e. _om ) -> suc B e. _om ) |
5 |
4
|
fvresd |
|- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
6 |
|
fvres |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
7 |
6
|
adantl |
|- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
8 |
7
|
fveq2d |
|- ( ( A e. On /\ B e. _om ) -> ( ( x e. _V |-> suc x ) ` ( ( rec ( ( x e. _V |-> suc x ) , A ) |` _om ) ` B ) ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
9 |
2 5 8
|
3eqtr3d |
|- ( ( A e. On /\ B e. _om ) -> ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
10 |
|
nnon |
|- ( B e. _om -> B e. On ) |
11 |
|
suceloni |
|- ( B e. On -> suc B e. On ) |
12 |
10 11
|
syl |
|- ( B e. _om -> suc B e. On ) |
13 |
|
oav |
|- ( ( A e. On /\ suc B e. On ) -> ( A +o suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
14 |
12 13
|
sylan2 |
|- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
15 |
|
ovex |
|- ( A +o B ) e. _V |
16 |
|
suceq |
|- ( x = ( A +o B ) -> suc x = suc ( A +o B ) ) |
17 |
|
eqid |
|- ( x e. _V |-> suc x ) = ( x e. _V |-> suc x ) |
18 |
15
|
sucex |
|- suc ( A +o B ) e. _V |
19 |
16 17 18
|
fvmpt |
|- ( ( A +o B ) e. _V -> ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = suc ( A +o B ) ) |
20 |
15 19
|
ax-mp |
|- ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = suc ( A +o B ) |
21 |
|
oav |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
22 |
10 21
|
sylan2 |
|- ( ( A e. On /\ B e. _om ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
23 |
22
|
fveq2d |
|- ( ( A e. On /\ B e. _om ) -> ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
24 |
20 23
|
eqtr3id |
|- ( ( A e. On /\ B e. _om ) -> suc ( A +o B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
25 |
9 14 24
|
3eqtr4d |
|- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |