Description: Two ways to say that A is a nonzero ordinal number. Lemma 1.10 of Schloeder p. 2. (Contributed by Mario Carneiro, 21-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ondif1 | |- ( A e. ( On \ 1o ) <-> ( A e. On /\ (/) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif1o | |- ( A e. ( On \ 1o ) <-> ( A e. On /\ A =/= (/) ) ) |
|
| 2 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 3 | 2 | pm5.32i | |- ( ( A e. On /\ (/) e. A ) <-> ( A e. On /\ A =/= (/) ) ) |
| 4 | 1 3 | bitr4i | |- ( A e. ( On \ 1o ) <-> ( A e. On /\ (/) e. A ) ) |