| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
|- ( A e. ( On \ 2o ) <-> ( A e. On /\ -. A e. 2o ) ) |
| 2 |
|
1on |
|- 1o e. On |
| 3 |
|
ontri1 |
|- ( ( A e. On /\ 1o e. On ) -> ( A C_ 1o <-> -. 1o e. A ) ) |
| 4 |
|
onsssuc |
|- ( ( A e. On /\ 1o e. On ) -> ( A C_ 1o <-> A e. suc 1o ) ) |
| 5 |
|
df-2o |
|- 2o = suc 1o |
| 6 |
5
|
eleq2i |
|- ( A e. 2o <-> A e. suc 1o ) |
| 7 |
4 6
|
bitr4di |
|- ( ( A e. On /\ 1o e. On ) -> ( A C_ 1o <-> A e. 2o ) ) |
| 8 |
3 7
|
bitr3d |
|- ( ( A e. On /\ 1o e. On ) -> ( -. 1o e. A <-> A e. 2o ) ) |
| 9 |
2 8
|
mpan2 |
|- ( A e. On -> ( -. 1o e. A <-> A e. 2o ) ) |
| 10 |
9
|
con1bid |
|- ( A e. On -> ( -. A e. 2o <-> 1o e. A ) ) |
| 11 |
10
|
pm5.32i |
|- ( ( A e. On /\ -. A e. 2o ) <-> ( A e. On /\ 1o e. A ) ) |
| 12 |
1 11
|
bitri |
|- ( A e. ( On \ 2o ) <-> ( A e. On /\ 1o e. A ) ) |