Step |
Hyp |
Ref |
Expression |
1 |
|
onelon |
|- ( ( z e. On /\ y e. z ) -> y e. On ) |
2 |
|
vex |
|- z e. _V |
3 |
|
onelss |
|- ( z e. On -> ( y e. z -> y C_ z ) ) |
4 |
3
|
imp |
|- ( ( z e. On /\ y e. z ) -> y C_ z ) |
5 |
|
ssdomg |
|- ( z e. _V -> ( y C_ z -> y ~<_ z ) ) |
6 |
2 4 5
|
mpsyl |
|- ( ( z e. On /\ y e. z ) -> y ~<_ z ) |
7 |
1 6
|
jca |
|- ( ( z e. On /\ y e. z ) -> ( y e. On /\ y ~<_ z ) ) |
8 |
|
domtr |
|- ( ( y ~<_ z /\ z ~<_ A ) -> y ~<_ A ) |
9 |
8
|
anim2i |
|- ( ( y e. On /\ ( y ~<_ z /\ z ~<_ A ) ) -> ( y e. On /\ y ~<_ A ) ) |
10 |
9
|
anassrs |
|- ( ( ( y e. On /\ y ~<_ z ) /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) |
11 |
7 10
|
sylan |
|- ( ( ( z e. On /\ y e. z ) /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) |
12 |
11
|
exp31 |
|- ( z e. On -> ( y e. z -> ( z ~<_ A -> ( y e. On /\ y ~<_ A ) ) ) ) |
13 |
12
|
com12 |
|- ( y e. z -> ( z e. On -> ( z ~<_ A -> ( y e. On /\ y ~<_ A ) ) ) ) |
14 |
13
|
impd |
|- ( y e. z -> ( ( z e. On /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) ) |
15 |
|
breq1 |
|- ( x = z -> ( x ~<_ A <-> z ~<_ A ) ) |
16 |
15
|
elrab |
|- ( z e. { x e. On | x ~<_ A } <-> ( z e. On /\ z ~<_ A ) ) |
17 |
|
breq1 |
|- ( x = y -> ( x ~<_ A <-> y ~<_ A ) ) |
18 |
17
|
elrab |
|- ( y e. { x e. On | x ~<_ A } <-> ( y e. On /\ y ~<_ A ) ) |
19 |
14 16 18
|
3imtr4g |
|- ( y e. z -> ( z e. { x e. On | x ~<_ A } -> y e. { x e. On | x ~<_ A } ) ) |
20 |
19
|
imp |
|- ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) |
21 |
20
|
gen2 |
|- A. y A. z ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) |
22 |
|
dftr2 |
|- ( Tr { x e. On | x ~<_ A } <-> A. y A. z ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) ) |
23 |
21 22
|
mpbir |
|- Tr { x e. On | x ~<_ A } |
24 |
|
ssrab2 |
|- { x e. On | x ~<_ A } C_ On |
25 |
|
ordon |
|- Ord On |
26 |
|
trssord |
|- ( ( Tr { x e. On | x ~<_ A } /\ { x e. On | x ~<_ A } C_ On /\ Ord On ) -> Ord { x e. On | x ~<_ A } ) |
27 |
23 24 25 26
|
mp3an |
|- Ord { x e. On | x ~<_ A } |
28 |
|
elex |
|- ( A e. V -> A e. _V ) |
29 |
|
canth2g |
|- ( A e. _V -> A ~< ~P A ) |
30 |
|
domsdomtr |
|- ( ( x ~<_ A /\ A ~< ~P A ) -> x ~< ~P A ) |
31 |
29 30
|
sylan2 |
|- ( ( x ~<_ A /\ A e. _V ) -> x ~< ~P A ) |
32 |
31
|
expcom |
|- ( A e. _V -> ( x ~<_ A -> x ~< ~P A ) ) |
33 |
32
|
ralrimivw |
|- ( A e. _V -> A. x e. On ( x ~<_ A -> x ~< ~P A ) ) |
34 |
28 33
|
syl |
|- ( A e. V -> A. x e. On ( x ~<_ A -> x ~< ~P A ) ) |
35 |
|
ss2rab |
|- ( { x e. On | x ~<_ A } C_ { x e. On | x ~< ~P A } <-> A. x e. On ( x ~<_ A -> x ~< ~P A ) ) |
36 |
34 35
|
sylibr |
|- ( A e. V -> { x e. On | x ~<_ A } C_ { x e. On | x ~< ~P A } ) |
37 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
38 |
|
numth3 |
|- ( ~P A e. _V -> ~P A e. dom card ) |
39 |
|
cardval2 |
|- ( ~P A e. dom card -> ( card ` ~P A ) = { x e. On | x ~< ~P A } ) |
40 |
37 38 39
|
3syl |
|- ( A e. V -> ( card ` ~P A ) = { x e. On | x ~< ~P A } ) |
41 |
|
fvex |
|- ( card ` ~P A ) e. _V |
42 |
40 41
|
eqeltrrdi |
|- ( A e. V -> { x e. On | x ~< ~P A } e. _V ) |
43 |
|
ssexg |
|- ( ( { x e. On | x ~<_ A } C_ { x e. On | x ~< ~P A } /\ { x e. On | x ~< ~P A } e. _V ) -> { x e. On | x ~<_ A } e. _V ) |
44 |
36 42 43
|
syl2anc |
|- ( A e. V -> { x e. On | x ~<_ A } e. _V ) |
45 |
|
elong |
|- ( { x e. On | x ~<_ A } e. _V -> ( { x e. On | x ~<_ A } e. On <-> Ord { x e. On | x ~<_ A } ) ) |
46 |
44 45
|
syl |
|- ( A e. V -> ( { x e. On | x ~<_ A } e. On <-> Ord { x e. On | x ~<_ A } ) ) |
47 |
27 46
|
mpbiri |
|- ( A e. V -> { x e. On | x ~<_ A } e. On ) |