| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znegcl |
|- ( A e. ZZ -> -u A e. ZZ ) |
| 2 |
1
|
adantr |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> -u A e. ZZ ) |
| 3 |
|
znegcl |
|- ( ( ( A - 1 ) / 2 ) e. ZZ -> -u ( ( A - 1 ) / 2 ) e. ZZ ) |
| 4 |
3
|
adantl |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> -u ( ( A - 1 ) / 2 ) e. ZZ ) |
| 5 |
|
peano2zm |
|- ( A e. ZZ -> ( A - 1 ) e. ZZ ) |
| 6 |
5
|
zcnd |
|- ( A e. ZZ -> ( A - 1 ) e. CC ) |
| 7 |
6
|
adantr |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( A - 1 ) e. CC ) |
| 8 |
|
2cnd |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> 2 e. CC ) |
| 9 |
|
2ne0 |
|- 2 =/= 0 |
| 10 |
9
|
a1i |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> 2 =/= 0 ) |
| 11 |
|
divneg |
|- ( ( ( A - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( A - 1 ) / 2 ) = ( -u ( A - 1 ) / 2 ) ) |
| 12 |
11
|
eleq1d |
|- ( ( ( A - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( -u ( ( A - 1 ) / 2 ) e. ZZ <-> ( -u ( A - 1 ) / 2 ) e. ZZ ) ) |
| 13 |
7 8 10 12
|
syl3anc |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( -u ( ( A - 1 ) / 2 ) e. ZZ <-> ( -u ( A - 1 ) / 2 ) e. ZZ ) ) |
| 14 |
4 13
|
mpbid |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( -u ( A - 1 ) / 2 ) e. ZZ ) |
| 15 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 16 |
|
1cnd |
|- ( A e. ZZ -> 1 e. CC ) |
| 17 |
|
negsubdi |
|- ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( -u A + 1 ) ) |
| 18 |
17
|
eqcomd |
|- ( ( A e. CC /\ 1 e. CC ) -> ( -u A + 1 ) = -u ( A - 1 ) ) |
| 19 |
15 16 18
|
syl2anc |
|- ( A e. ZZ -> ( -u A + 1 ) = -u ( A - 1 ) ) |
| 20 |
19
|
oveq1d |
|- ( A e. ZZ -> ( ( -u A + 1 ) / 2 ) = ( -u ( A - 1 ) / 2 ) ) |
| 21 |
20
|
eleq1d |
|- ( A e. ZZ -> ( ( ( -u A + 1 ) / 2 ) e. ZZ <-> ( -u ( A - 1 ) / 2 ) e. ZZ ) ) |
| 22 |
21
|
adantr |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( ( ( -u A + 1 ) / 2 ) e. ZZ <-> ( -u ( A - 1 ) / 2 ) e. ZZ ) ) |
| 23 |
14 22
|
mpbird |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( ( -u A + 1 ) / 2 ) e. ZZ ) |
| 24 |
2 23
|
jca |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) -> ( -u A e. ZZ /\ ( ( -u A + 1 ) / 2 ) e. ZZ ) ) |
| 25 |
|
isodd2 |
|- ( A e. Odd <-> ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. ZZ ) ) |
| 26 |
|
isodd |
|- ( -u A e. Odd <-> ( -u A e. ZZ /\ ( ( -u A + 1 ) / 2 ) e. ZZ ) ) |
| 27 |
24 25 26
|
3imtr4i |
|- ( A e. Odd -> -u A e. Odd ) |