Description: A member of an ordinal number is an ordinal number. Theorem 7M(a) of Enderton p. 192. (Contributed by NM, 11-Jun-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | on.1 | |- A e. On |
|
| Assertion | oneli | |- ( B e. A -> B e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | |- A e. On |
|
| 2 | onelon | |- ( ( A e. On /\ B e. A ) -> B e. On ) |
|
| 3 | 1 2 | mpan | |- ( B e. A -> B e. On ) |