Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of BellMachover p. 469. (Contributed by NM, 26-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | onelon | |- ( ( A e. On /\ B e. A ) -> B e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | |- ( A e. On -> Ord A ) |
|
2 | ordelon | |- ( ( Ord A /\ B e. A ) -> B e. On ) |
|
3 | 1 2 | sylan | |- ( ( A e. On /\ B e. A ) -> B e. On ) |