Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of BellMachover p. 469. Lemma 1.3 of Schloeder p. 1. (Contributed by NM, 26-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onelon | |- ( ( A e. On /\ B e. A ) -> B e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( A e. On -> Ord A ) |
|
| 2 | ordelon | |- ( ( Ord A /\ B e. A ) -> B e. On ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. On /\ B e. A ) -> B e. On ) |