Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onelss | |- ( A e. On -> ( B e. A -> B C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( A e. On -> Ord A ) |
|
| 2 | ordelss | |- ( ( Ord A /\ B e. A ) -> B C_ A ) |
|
| 3 | 2 | ex | |- ( Ord A -> ( B e. A -> B C_ A ) ) |
| 4 | 1 3 | syl | |- ( A e. On -> ( B e. A -> B C_ A ) ) |