Metamath Proof Explorer


Theorem onelss

Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion onelss
|- ( A e. On -> ( B e. A -> B C_ A ) )

Proof

Step Hyp Ref Expression
1 eloni
 |-  ( A e. On -> Ord A )
2 ordelss
 |-  ( ( Ord A /\ B e. A ) -> B C_ A )
3 2 ex
 |-  ( Ord A -> ( B e. A -> B C_ A ) )
4 1 3 syl
 |-  ( A e. On -> ( B e. A -> B C_ A ) )