| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
|- A C_ A |
| 2 |
|
sseq2 |
|- ( b = A -> ( A C_ b <-> A C_ A ) ) |
| 3 |
2
|
rspcev |
|- ( ( A e. C /\ A C_ A ) -> E. b e. C A C_ b ) |
| 4 |
1 3
|
mpan2 |
|- ( A e. C -> E. b e. C A C_ b ) |
| 5 |
|
ontr2 |
|- ( ( A e. On /\ C e. On ) -> ( ( A C_ b /\ b e. C ) -> A e. C ) ) |
| 6 |
5
|
expcomd |
|- ( ( A e. On /\ C e. On ) -> ( b e. C -> ( A C_ b -> A e. C ) ) ) |
| 7 |
6
|
rexlimdv |
|- ( ( A e. On /\ C e. On ) -> ( E. b e. C A C_ b -> A e. C ) ) |
| 8 |
4 7
|
impbid2 |
|- ( ( A e. On /\ C e. On ) -> ( A e. C <-> E. b e. C A C_ b ) ) |