Description: From one negated implication it is not the case its nonnegated form and a random others are both true. (Contributed by Jarvin Udandy, 11-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onenotinotbothi.1 | |- -. ( ph -> ps ) |
|
Assertion | onenotinotbothi | |- -. ( ( ph -> ps ) /\ ( ch -> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onenotinotbothi.1 | |- -. ( ph -> ps ) |
|
2 | 1 | orci | |- ( -. ( ph -> ps ) \/ -. ( ch -> th ) ) |
3 | pm3.14 | |- ( ( -. ( ph -> ps ) \/ -. ( ch -> th ) ) -> -. ( ( ph -> ps ) /\ ( ch -> th ) ) ) |
|
4 | 2 3 | ax-mp | |- -. ( ( ph -> ps ) /\ ( ch -> th ) ) |