Metamath Proof Explorer


Theorem onenotinotbothi

Description: From one negated implication it is not the case its nonnegated form and a random others are both true. (Contributed by Jarvin Udandy, 11-Sep-2020)

Ref Expression
Hypothesis onenotinotbothi.1
|- -. ( ph -> ps )
Assertion onenotinotbothi
|- -. ( ( ph -> ps ) /\ ( ch -> th ) )

Proof

Step Hyp Ref Expression
1 onenotinotbothi.1
 |-  -. ( ph -> ps )
2 1 orci
 |-  ( -. ( ph -> ps ) \/ -. ( ch -> th ) )
3 pm3.14
 |-  ( ( -. ( ph -> ps ) \/ -. ( ch -> th ) ) -> -. ( ( ph -> ps ) /\ ( ch -> th ) ) )
4 2 3 ax-mp
 |-  -. ( ( ph -> ps ) /\ ( ch -> th ) )