| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onnbtwn |
|- ( A e. On -> -. ( A e. B /\ B e. suc A ) ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> -. ( A e. B /\ B e. suc A ) ) |
| 3 |
|
suceq |
|- ( C = ( 2o .o A ) -> suc C = suc ( 2o .o A ) ) |
| 4 |
3
|
eqeq1d |
|- ( C = ( 2o .o A ) -> ( suc C = ( 2o .o B ) <-> suc ( 2o .o A ) = ( 2o .o B ) ) ) |
| 5 |
4
|
3ad2ant3 |
|- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> ( suc C = ( 2o .o B ) <-> suc ( 2o .o A ) = ( 2o .o B ) ) ) |
| 6 |
|
ovex |
|- ( 2o .o A ) e. _V |
| 7 |
6
|
sucid |
|- ( 2o .o A ) e. suc ( 2o .o A ) |
| 8 |
|
eleq2 |
|- ( suc ( 2o .o A ) = ( 2o .o B ) -> ( ( 2o .o A ) e. suc ( 2o .o A ) <-> ( 2o .o A ) e. ( 2o .o B ) ) ) |
| 9 |
7 8
|
mpbii |
|- ( suc ( 2o .o A ) = ( 2o .o B ) -> ( 2o .o A ) e. ( 2o .o B ) ) |
| 10 |
|
2on |
|- 2o e. On |
| 11 |
|
omord |
|- ( ( A e. On /\ B e. On /\ 2o e. On ) -> ( ( A e. B /\ (/) e. 2o ) <-> ( 2o .o A ) e. ( 2o .o B ) ) ) |
| 12 |
10 11
|
mp3an3 |
|- ( ( A e. On /\ B e. On ) -> ( ( A e. B /\ (/) e. 2o ) <-> ( 2o .o A ) e. ( 2o .o B ) ) ) |
| 13 |
|
simpl |
|- ( ( A e. B /\ (/) e. 2o ) -> A e. B ) |
| 14 |
12 13
|
biimtrrdi |
|- ( ( A e. On /\ B e. On ) -> ( ( 2o .o A ) e. ( 2o .o B ) -> A e. B ) ) |
| 15 |
9 14
|
syl5 |
|- ( ( A e. On /\ B e. On ) -> ( suc ( 2o .o A ) = ( 2o .o B ) -> A e. B ) ) |
| 16 |
|
simpr |
|- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> suc ( 2o .o A ) = ( 2o .o B ) ) |
| 17 |
|
omcl |
|- ( ( 2o e. On /\ A e. On ) -> ( 2o .o A ) e. On ) |
| 18 |
10 17
|
mpan |
|- ( A e. On -> ( 2o .o A ) e. On ) |
| 19 |
|
oa1suc |
|- ( ( 2o .o A ) e. On -> ( ( 2o .o A ) +o 1o ) = suc ( 2o .o A ) ) |
| 20 |
18 19
|
syl |
|- ( A e. On -> ( ( 2o .o A ) +o 1o ) = suc ( 2o .o A ) ) |
| 21 |
|
1oex |
|- 1o e. _V |
| 22 |
21
|
sucid |
|- 1o e. suc 1o |
| 23 |
|
df-2o |
|- 2o = suc 1o |
| 24 |
22 23
|
eleqtrri |
|- 1o e. 2o |
| 25 |
|
1on |
|- 1o e. On |
| 26 |
|
oaord |
|- ( ( 1o e. On /\ 2o e. On /\ ( 2o .o A ) e. On ) -> ( 1o e. 2o <-> ( ( 2o .o A ) +o 1o ) e. ( ( 2o .o A ) +o 2o ) ) ) |
| 27 |
25 10 18 26
|
mp3an12i |
|- ( A e. On -> ( 1o e. 2o <-> ( ( 2o .o A ) +o 1o ) e. ( ( 2o .o A ) +o 2o ) ) ) |
| 28 |
24 27
|
mpbii |
|- ( A e. On -> ( ( 2o .o A ) +o 1o ) e. ( ( 2o .o A ) +o 2o ) ) |
| 29 |
|
omsuc |
|- ( ( 2o e. On /\ A e. On ) -> ( 2o .o suc A ) = ( ( 2o .o A ) +o 2o ) ) |
| 30 |
10 29
|
mpan |
|- ( A e. On -> ( 2o .o suc A ) = ( ( 2o .o A ) +o 2o ) ) |
| 31 |
28 30
|
eleqtrrd |
|- ( A e. On -> ( ( 2o .o A ) +o 1o ) e. ( 2o .o suc A ) ) |
| 32 |
20 31
|
eqeltrrd |
|- ( A e. On -> suc ( 2o .o A ) e. ( 2o .o suc A ) ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> suc ( 2o .o A ) e. ( 2o .o suc A ) ) |
| 34 |
16 33
|
eqeltrrd |
|- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> ( 2o .o B ) e. ( 2o .o suc A ) ) |
| 35 |
|
onsuc |
|- ( A e. On -> suc A e. On ) |
| 36 |
|
omord |
|- ( ( B e. On /\ suc A e. On /\ 2o e. On ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 37 |
10 36
|
mp3an3 |
|- ( ( B e. On /\ suc A e. On ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 38 |
35 37
|
sylan2 |
|- ( ( B e. On /\ A e. On ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 39 |
38
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 40 |
39
|
adantr |
|- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 41 |
34 40
|
mpbird |
|- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> ( B e. suc A /\ (/) e. 2o ) ) |
| 42 |
41
|
simpld |
|- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> B e. suc A ) |
| 43 |
42
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( suc ( 2o .o A ) = ( 2o .o B ) -> B e. suc A ) ) |
| 44 |
15 43
|
jcad |
|- ( ( A e. On /\ B e. On ) -> ( suc ( 2o .o A ) = ( 2o .o B ) -> ( A e. B /\ B e. suc A ) ) ) |
| 45 |
44
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> ( suc ( 2o .o A ) = ( 2o .o B ) -> ( A e. B /\ B e. suc A ) ) ) |
| 46 |
5 45
|
sylbid |
|- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> ( suc C = ( 2o .o B ) -> ( A e. B /\ B e. suc A ) ) ) |
| 47 |
2 46
|
mtod |
|- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> -. suc C = ( 2o .o B ) ) |