Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
|- ( A e. Fin <-> E. x e. _om A ~~ x ) |
2 |
|
onomeneq |
|- ( ( A e. On /\ x e. _om ) -> ( A ~~ x <-> A = x ) ) |
3 |
|
eleq1a |
|- ( x e. _om -> ( A = x -> A e. _om ) ) |
4 |
3
|
adantl |
|- ( ( A e. On /\ x e. _om ) -> ( A = x -> A e. _om ) ) |
5 |
2 4
|
sylbid |
|- ( ( A e. On /\ x e. _om ) -> ( A ~~ x -> A e. _om ) ) |
6 |
5
|
rexlimdva |
|- ( A e. On -> ( E. x e. _om A ~~ x -> A e. _om ) ) |
7 |
|
enrefg |
|- ( A e. _om -> A ~~ A ) |
8 |
|
breq2 |
|- ( x = A -> ( A ~~ x <-> A ~~ A ) ) |
9 |
8
|
rspcev |
|- ( ( A e. _om /\ A ~~ A ) -> E. x e. _om A ~~ x ) |
10 |
7 9
|
mpdan |
|- ( A e. _om -> E. x e. _om A ~~ x ) |
11 |
6 10
|
impbid1 |
|- ( A e. On -> ( E. x e. _om A ~~ x <-> A e. _om ) ) |
12 |
1 11
|
bitrid |
|- ( A e. On -> ( A e. Fin <-> A e. _om ) ) |