| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfi |  |-  ( A e. Fin <-> E. x e. _om A ~~ x ) | 
						
							| 2 |  | onomeneq |  |-  ( ( A e. On /\ x e. _om ) -> ( A ~~ x <-> A = x ) ) | 
						
							| 3 |  | eleq1a |  |-  ( x e. _om -> ( A = x -> A e. _om ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. On /\ x e. _om ) -> ( A = x -> A e. _om ) ) | 
						
							| 5 | 2 4 | sylbid |  |-  ( ( A e. On /\ x e. _om ) -> ( A ~~ x -> A e. _om ) ) | 
						
							| 6 | 5 | rexlimdva |  |-  ( A e. On -> ( E. x e. _om A ~~ x -> A e. _om ) ) | 
						
							| 7 |  | enrefnn |  |-  ( A e. _om -> A ~~ A ) | 
						
							| 8 |  | breq2 |  |-  ( x = A -> ( A ~~ x <-> A ~~ A ) ) | 
						
							| 9 | 8 | rspcev |  |-  ( ( A e. _om /\ A ~~ A ) -> E. x e. _om A ~~ x ) | 
						
							| 10 | 7 9 | mpdan |  |-  ( A e. _om -> E. x e. _om A ~~ x ) | 
						
							| 11 | 6 10 | impbid1 |  |-  ( A e. On -> ( E. x e. _om A ~~ x <-> A e. _om ) ) | 
						
							| 12 | 1 11 | bitrid |  |-  ( A e. On -> ( A e. Fin <-> A e. _om ) ) |