Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | onfin2 | |- _om = ( On i^i Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon | |- ( x e. _om -> x e. On ) |
|
2 | onfin | |- ( x e. On -> ( x e. Fin <-> x e. _om ) ) |
|
3 | 2 | biimprcd | |- ( x e. _om -> ( x e. On -> x e. Fin ) ) |
4 | 1 3 | jcai | |- ( x e. _om -> ( x e. On /\ x e. Fin ) ) |
5 | 2 | biimpa | |- ( ( x e. On /\ x e. Fin ) -> x e. _om ) |
6 | 4 5 | impbii | |- ( x e. _om <-> ( x e. On /\ x e. Fin ) ) |
7 | elin | |- ( x e. ( On i^i Fin ) <-> ( x e. On /\ x e. Fin ) ) |
|
8 | 6 7 | bitr4i | |- ( x e. _om <-> x e. ( On i^i Fin ) ) |
9 | 8 | eqriv | |- _om = ( On i^i Fin ) |