Metamath Proof Explorer


Theorem onfin2

Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013)

Ref Expression
Assertion onfin2
|- _om = ( On i^i Fin )

Proof

Step Hyp Ref Expression
1 nnon
 |-  ( x e. _om -> x e. On )
2 onfin
 |-  ( x e. On -> ( x e. Fin <-> x e. _om ) )
3 2 biimprcd
 |-  ( x e. _om -> ( x e. On -> x e. Fin ) )
4 1 3 jcai
 |-  ( x e. _om -> ( x e. On /\ x e. Fin ) )
5 2 biimpa
 |-  ( ( x e. On /\ x e. Fin ) -> x e. _om )
6 4 5 impbii
 |-  ( x e. _om <-> ( x e. On /\ x e. Fin ) )
7 elin
 |-  ( x e. ( On i^i Fin ) <-> ( x e. On /\ x e. Fin ) )
8 6 7 bitr4i
 |-  ( x e. _om <-> x e. ( On i^i Fin ) )
9 8 eqriv
 |-  _om = ( On i^i Fin )