Step |
Hyp |
Ref |
Expression |
1 |
|
dfepfr |
|- ( _E Fr On <-> A. x ( ( x C_ On /\ x =/= (/) ) -> E. z e. x ( x i^i z ) = (/) ) ) |
2 |
|
n0 |
|- ( x =/= (/) <-> E. y y e. x ) |
3 |
|
ineq2 |
|- ( z = y -> ( x i^i z ) = ( x i^i y ) ) |
4 |
3
|
eqeq1d |
|- ( z = y -> ( ( x i^i z ) = (/) <-> ( x i^i y ) = (/) ) ) |
5 |
4
|
rspcev |
|- ( ( y e. x /\ ( x i^i y ) = (/) ) -> E. z e. x ( x i^i z ) = (/) ) |
6 |
5
|
adantll |
|- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) = (/) ) -> E. z e. x ( x i^i z ) = (/) ) |
7 |
|
inss1 |
|- ( x i^i y ) C_ x |
8 |
|
ssel2 |
|- ( ( x C_ On /\ y e. x ) -> y e. On ) |
9 |
|
eloni |
|- ( y e. On -> Ord y ) |
10 |
|
ordfr |
|- ( Ord y -> _E Fr y ) |
11 |
8 9 10
|
3syl |
|- ( ( x C_ On /\ y e. x ) -> _E Fr y ) |
12 |
|
inss2 |
|- ( x i^i y ) C_ y |
13 |
|
vex |
|- x e. _V |
14 |
13
|
inex1 |
|- ( x i^i y ) e. _V |
15 |
14
|
epfrc |
|- ( ( _E Fr y /\ ( x i^i y ) C_ y /\ ( x i^i y ) =/= (/) ) -> E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) ) |
16 |
12 15
|
mp3an2 |
|- ( ( _E Fr y /\ ( x i^i y ) =/= (/) ) -> E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) ) |
17 |
11 16
|
sylan |
|- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) =/= (/) ) -> E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) ) |
18 |
|
inass |
|- ( ( x i^i y ) i^i z ) = ( x i^i ( y i^i z ) ) |
19 |
8 9
|
syl |
|- ( ( x C_ On /\ y e. x ) -> Ord y ) |
20 |
|
elinel2 |
|- ( z e. ( x i^i y ) -> z e. y ) |
21 |
|
ordelss |
|- ( ( Ord y /\ z e. y ) -> z C_ y ) |
22 |
19 20 21
|
syl2an |
|- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> z C_ y ) |
23 |
|
sseqin2 |
|- ( z C_ y <-> ( y i^i z ) = z ) |
24 |
22 23
|
sylib |
|- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> ( y i^i z ) = z ) |
25 |
24
|
ineq2d |
|- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> ( x i^i ( y i^i z ) ) = ( x i^i z ) ) |
26 |
18 25
|
eqtrid |
|- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> ( ( x i^i y ) i^i z ) = ( x i^i z ) ) |
27 |
26
|
eqeq1d |
|- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> ( ( ( x i^i y ) i^i z ) = (/) <-> ( x i^i z ) = (/) ) ) |
28 |
27
|
rexbidva |
|- ( ( x C_ On /\ y e. x ) -> ( E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) <-> E. z e. ( x i^i y ) ( x i^i z ) = (/) ) ) |
29 |
28
|
adantr |
|- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) =/= (/) ) -> ( E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) <-> E. z e. ( x i^i y ) ( x i^i z ) = (/) ) ) |
30 |
17 29
|
mpbid |
|- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) =/= (/) ) -> E. z e. ( x i^i y ) ( x i^i z ) = (/) ) |
31 |
|
ssrexv |
|- ( ( x i^i y ) C_ x -> ( E. z e. ( x i^i y ) ( x i^i z ) = (/) -> E. z e. x ( x i^i z ) = (/) ) ) |
32 |
7 30 31
|
mpsyl |
|- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) =/= (/) ) -> E. z e. x ( x i^i z ) = (/) ) |
33 |
6 32
|
pm2.61dane |
|- ( ( x C_ On /\ y e. x ) -> E. z e. x ( x i^i z ) = (/) ) |
34 |
33
|
ex |
|- ( x C_ On -> ( y e. x -> E. z e. x ( x i^i z ) = (/) ) ) |
35 |
34
|
exlimdv |
|- ( x C_ On -> ( E. y y e. x -> E. z e. x ( x i^i z ) = (/) ) ) |
36 |
2 35
|
syl5bi |
|- ( x C_ On -> ( x =/= (/) -> E. z e. x ( x i^i z ) = (/) ) ) |
37 |
36
|
imp |
|- ( ( x C_ On /\ x =/= (/) ) -> E. z e. x ( x i^i z ) = (/) ) |
38 |
1 37
|
mpgbir |
|- _E Fr On |