Step |
Hyp |
Ref |
Expression |
1 |
|
dfepfr |
|- ( _E Fr On <-> A. a ( ( a C_ On /\ a =/= (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |
2 |
|
simpr |
|- ( ( a C_ On /\ a =/= (/) ) -> a =/= (/) ) |
3 |
|
n0 |
|- ( a =/= (/) <-> E. x x e. a ) |
4 |
|
onfrALTlem1 |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |
5 |
4
|
expd |
|- ( ( a C_ On /\ a =/= (/) ) -> ( x e. a -> ( ( a i^i x ) = (/) -> E. y e. a ( a i^i y ) = (/) ) ) ) |
6 |
|
onfrALTlem2 |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |
7 |
6
|
expd |
|- ( ( a C_ On /\ a =/= (/) ) -> ( x e. a -> ( -. ( a i^i x ) = (/) -> E. y e. a ( a i^i y ) = (/) ) ) ) |
8 |
|
pm2.61 |
|- ( ( ( a i^i x ) = (/) -> E. y e. a ( a i^i y ) = (/) ) -> ( ( -. ( a i^i x ) = (/) -> E. y e. a ( a i^i y ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |
9 |
5 7 8
|
syl6c |
|- ( ( a C_ On /\ a =/= (/) ) -> ( x e. a -> E. y e. a ( a i^i y ) = (/) ) ) |
10 |
9
|
exlimdv |
|- ( ( a C_ On /\ a =/= (/) ) -> ( E. x x e. a -> E. y e. a ( a i^i y ) = (/) ) ) |
11 |
3 10
|
syl5bi |
|- ( ( a C_ On /\ a =/= (/) ) -> ( a =/= (/) -> E. y e. a ( a i^i y ) = (/) ) ) |
12 |
2 11
|
mpd |
|- ( ( a C_ On /\ a =/= (/) ) -> E. y e. a ( a i^i y ) = (/) ) |
13 |
1 12
|
mpgbir |
|- _E Fr On |