Step |
Hyp |
Ref |
Expression |
1 |
|
19.8a |
|- ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. x ( x e. a /\ ( a i^i x ) = (/) ) ) |
2 |
1
|
a1i |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. x ( x e. a /\ ( a i^i x ) = (/) ) ) ) |
3 |
|
cbvexsv |
|- ( E. x ( x e. a /\ ( a i^i x ) = (/) ) <-> E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) ) |
4 |
2 3
|
syl6ib |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) ) ) |
5 |
|
sbsbc |
|- ( [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) ) |
6 |
|
onfrALTlem4 |
|- ( [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
7 |
5 6
|
bitri |
|- ( [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
8 |
7
|
exbii |
|- ( E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) |
9 |
4 8
|
syl6ib |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
10 |
|
df-rex |
|- ( E. y e. a ( a i^i y ) = (/) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) |
11 |
9 10
|
syl6ibr |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) ) |