Step |
Hyp |
Ref |
Expression |
1 |
|
idn2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ ( a i^i x ) = (/) ) ->. ( x e. a /\ ( a i^i x ) = (/) ) ). |
2 |
|
19.8a |
|- ( ( x e. a /\ ( a i^i x ) = (/) ) -> E. x ( x e. a /\ ( a i^i x ) = (/) ) ) |
3 |
1 2
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ ( a i^i x ) = (/) ) ->. E. x ( x e. a /\ ( a i^i x ) = (/) ) ). |
4 |
|
cbvexsv |
|- ( E. x ( x e. a /\ ( a i^i x ) = (/) ) <-> E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) ) |
5 |
4
|
biimpi |
|- ( E. x ( x e. a /\ ( a i^i x ) = (/) ) -> E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) ) |
6 |
3 5
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ ( a i^i x ) = (/) ) ->. E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) ). |
7 |
|
sbsbc |
|- ( [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) ) |
8 |
|
onfrALTlem4 |
|- ( [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
9 |
7 8
|
bitri |
|- ( [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
10 |
9
|
ax-gen |
|- A. y ( [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
11 |
|
exbi |
|- ( A. y ( [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) -> ( E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
12 |
10 11
|
e0a |
|- ( E. y [ y / x ] ( x e. a /\ ( a i^i x ) = (/) ) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) |
13 |
6 12
|
e2bi |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ ( a i^i x ) = (/) ) ->. E. y ( y e. a /\ ( a i^i y ) = (/) ) ). |
14 |
|
df-rex |
|- ( E. y e. a ( a i^i y ) = (/) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) |
15 |
13 14
|
e2bir |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ). |