Step |
Hyp |
Ref |
Expression |
1 |
|
idn3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ). |
2 |
|
simpr |
|- ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> z e. ( a i^i y ) ) |
3 |
1 2
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( a i^i y ) ). |
4 |
|
inss2 |
|- ( a i^i y ) C_ y |
5 |
4
|
sseli |
|- ( z e. ( a i^i y ) -> z e. y ) |
6 |
3 5
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. y ). |
7 |
|
inss1 |
|- ( a i^i y ) C_ a |
8 |
7
|
sseli |
|- ( z e. ( a i^i y ) -> z e. a ) |
9 |
3 8
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. a ). |
10 |
|
idn2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( x e. a /\ -. ( a i^i x ) = (/) ) ). |
11 |
|
simpl |
|- ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> x e. a ) |
12 |
10 11
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. a ). |
13 |
|
idn1 |
|- (. ( a C_ On /\ a =/= (/) ) ->. ( a C_ On /\ a =/= (/) ) ). |
14 |
|
simpl |
|- ( ( a C_ On /\ a =/= (/) ) -> a C_ On ) |
15 |
13 14
|
e1a |
|- (. ( a C_ On /\ a =/= (/) ) ->. a C_ On ). |
16 |
|
ssel |
|- ( a C_ On -> ( x e. a -> x e. On ) ) |
17 |
16
|
com12 |
|- ( x e. a -> ( a C_ On -> x e. On ) ) |
18 |
12 15 17
|
e21 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. On ). |
19 |
|
eloni |
|- ( x e. On -> Ord x ) |
20 |
18 19
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Ord x ). |
21 |
|
ordtr |
|- ( Ord x -> Tr x ) |
22 |
20 21
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Tr x ). |
23 |
|
simpll |
|- ( ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) -> y e. ( a i^i x ) ) |
24 |
1 23
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. y e. ( a i^i x ) ). |
25 |
|
inss2 |
|- ( a i^i x ) C_ x |
26 |
25
|
sseli |
|- ( y e. ( a i^i x ) -> y e. x ) |
27 |
24 26
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. y e. x ). |
28 |
|
trel |
|- ( Tr x -> ( ( z e. y /\ y e. x ) -> z e. x ) ) |
29 |
28
|
expcomd |
|- ( Tr x -> ( y e. x -> ( z e. y -> z e. x ) ) ) |
30 |
22 27 6 29
|
e233 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. x ). |
31 |
|
elin |
|- ( z e. ( a i^i x ) <-> ( z e. a /\ z e. x ) ) |
32 |
31
|
simplbi2 |
|- ( z e. a -> ( z e. x -> z e. ( a i^i x ) ) ) |
33 |
9 30 32
|
e33 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( a i^i x ) ). |
34 |
|
elin |
|- ( z e. ( ( a i^i x ) i^i y ) <-> ( z e. ( a i^i x ) /\ z e. y ) ) |
35 |
34
|
simplbi2com |
|- ( z e. y -> ( z e. ( a i^i x ) -> z e. ( ( a i^i x ) i^i y ) ) ) |
36 |
6 33 35
|
e33 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( ( a i^i x ) i^i y ) ). |
37 |
36
|
in3an |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ). |
38 |
37
|
gen31 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ). |
39 |
|
dfss2 |
|- ( ( a i^i y ) C_ ( ( a i^i x ) i^i y ) <-> A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ) |
40 |
39
|
biimpri |
|- ( A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) -> ( a i^i y ) C_ ( ( a i^i x ) i^i y ) ) |
41 |
38 40
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( a i^i y ) C_ ( ( a i^i x ) i^i y ) ). |
42 |
|
idn3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ). |
43 |
|
simpr |
|- ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( ( a i^i x ) i^i y ) = (/) ) |
44 |
42 43
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( ( a i^i x ) i^i y ) = (/) ). |
45 |
|
sseq0 |
|- ( ( ( a i^i y ) C_ ( ( a i^i x ) i^i y ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( a i^i y ) = (/) ) |
46 |
45
|
ex |
|- ( ( a i^i y ) C_ ( ( a i^i x ) i^i y ) -> ( ( ( a i^i x ) i^i y ) = (/) -> ( a i^i y ) = (/) ) ) |
47 |
41 44 46
|
e33 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( a i^i y ) = (/) ). |
48 |
|
simpl |
|- ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> y e. ( a i^i x ) ) |
49 |
42 48
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. y e. ( a i^i x ) ). |
50 |
|
inss1 |
|- ( a i^i x ) C_ a |
51 |
50
|
sseli |
|- ( y e. ( a i^i x ) -> y e. a ) |
52 |
49 51
|
e3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. y e. a ). |
53 |
|
pm3.21 |
|- ( ( a i^i y ) = (/) -> ( y e. a -> ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
54 |
47 52 53
|
e33 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ,. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( y e. a /\ ( a i^i y ) = (/) ) ). |
55 |
54
|
in3 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ). |
56 |
55
|
gen21 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. A. y ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ). |
57 |
|
exim |
|- ( A. y ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) -> ( E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
58 |
56 57
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ). |
59 |
|
onfrALTlem3VD |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ). |
60 |
|
df-rex |
|- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
61 |
60
|
biimpi |
|- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) -> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
62 |
59 61
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ). |
63 |
|
id |
|- ( ( E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) -> ( E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ) |
64 |
58 62 63
|
e22 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y ( y e. a /\ ( a i^i y ) = (/) ) ). |
65 |
|
df-rex |
|- ( E. y e. a ( a i^i y ) = (/) <-> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) |
66 |
65
|
biimpri |
|- ( E. y ( y e. a /\ ( a i^i y ) = (/) ) -> E. y e. a ( a i^i y ) = (/) ) |
67 |
64 66
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ). |