Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
|- ( a i^i x ) C_ ( a i^i x ) |
2 |
|
simpr |
|- ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> -. ( a i^i x ) = (/) ) |
3 |
2
|
a1i |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> -. ( a i^i x ) = (/) ) ) |
4 |
|
df-ne |
|- ( ( a i^i x ) =/= (/) <-> -. ( a i^i x ) = (/) ) |
5 |
3 4
|
syl6ibr |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( a i^i x ) =/= (/) ) ) |
6 |
|
pm3.2 |
|- ( ( a i^i x ) C_ ( a i^i x ) -> ( ( a i^i x ) =/= (/) -> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) ) |
7 |
1 5 6
|
mpsylsyld |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) ) |
8 |
|
vex |
|- x e. _V |
9 |
8
|
inex2 |
|- ( a i^i x ) e. _V |
10 |
|
inss2 |
|- ( a i^i x ) C_ x |
11 |
|
simpl |
|- ( ( a C_ On /\ a =/= (/) ) -> a C_ On ) |
12 |
|
simpl |
|- ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> x e. a ) |
13 |
|
ssel |
|- ( a C_ On -> ( x e. a -> x e. On ) ) |
14 |
11 12 13
|
syl2im |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> x e. On ) ) |
15 |
|
eloni |
|- ( x e. On -> Ord x ) |
16 |
14 15
|
syl6 |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> Ord x ) ) |
17 |
|
ordwe |
|- ( Ord x -> _E We x ) |
18 |
16 17
|
syl6 |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> _E We x ) ) |
19 |
|
wess |
|- ( ( a i^i x ) C_ x -> ( _E We x -> _E We ( a i^i x ) ) ) |
20 |
10 18 19
|
mpsylsyld |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> _E We ( a i^i x ) ) ) |
21 |
|
wefr |
|- ( _E We ( a i^i x ) -> _E Fr ( a i^i x ) ) |
22 |
20 21
|
syl6 |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> _E Fr ( a i^i x ) ) ) |
23 |
|
dfepfr |
|- ( _E Fr ( a i^i x ) <-> A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) |
24 |
22 23
|
syl6ib |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) ) |
25 |
|
spsbc |
|- ( ( a i^i x ) e. _V -> ( A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) -> [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) ) |
26 |
9 24 25
|
mpsylsyld |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) ) |
27 |
|
onfrALTlem5 |
|- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
28 |
26 27
|
syl6ib |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) ) |
29 |
7 28
|
mpdd |
|- ( ( a C_ On /\ a =/= (/) ) -> ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |