Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- a e. _V |
2 |
1
|
inex1 |
|- ( a i^i x ) e. _V |
3 |
|
sbcimg |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) ) ) |
4 |
2 3
|
ax-mp |
|- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) ) |
5 |
|
sbcan |
|- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) ) |
6 |
|
sseq1 |
|- ( b = ( a i^i x ) -> ( b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) ) ) |
7 |
2 6
|
sbcie |
|- ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) ) |
8 |
|
df-ne |
|- ( b =/= (/) <-> -. b = (/) ) |
9 |
8
|
sbcbii |
|- ( [. ( a i^i x ) / b ]. b =/= (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) |
10 |
|
sbcng |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. -. b = (/) <-> -. [. ( a i^i x ) / b ]. b = (/) ) ) |
11 |
10
|
bicomd |
|- ( ( a i^i x ) e. _V -> ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) ) |
12 |
2 11
|
ax-mp |
|- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) |
13 |
|
eqsbc1 |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) ) ) |
14 |
2 13
|
ax-mp |
|- ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) ) |
15 |
14
|
necon3bbii |
|- ( -. [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) =/= (/) ) |
16 |
9 12 15
|
3bitr2i |
|- ( [. ( a i^i x ) / b ]. b =/= (/) <-> ( a i^i x ) =/= (/) ) |
17 |
7 16
|
anbi12i |
|- ( ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) |
18 |
5 17
|
bitri |
|- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) |
19 |
|
df-rex |
|- ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
20 |
19
|
sbcbii |
|- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
21 |
|
sbcan |
|- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) ) |
22 |
|
sbcel2gv |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) ) ) |
23 |
2 22
|
ax-mp |
|- ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) ) |
24 |
|
sbceqg |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) ) ) |
25 |
2 24
|
ax-mp |
|- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) ) |
26 |
|
csbin |
|- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) |
27 |
|
csbvarg |
|- ( ( a i^i x ) e. _V -> [_ ( a i^i x ) / b ]_ b = ( a i^i x ) ) |
28 |
2 27
|
ax-mp |
|- [_ ( a i^i x ) / b ]_ b = ( a i^i x ) |
29 |
|
csbconstg |
|- ( ( a i^i x ) e. _V -> [_ ( a i^i x ) / b ]_ y = y ) |
30 |
2 29
|
ax-mp |
|- [_ ( a i^i x ) / b ]_ y = y |
31 |
28 30
|
ineq12i |
|- ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) = ( ( a i^i x ) i^i y ) |
32 |
26 31
|
eqtri |
|- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( ( a i^i x ) i^i y ) |
33 |
|
csb0 |
|- [_ ( a i^i x ) / b ]_ (/) = (/) |
34 |
32 33
|
eqeq12i |
|- ( [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) <-> ( ( a i^i x ) i^i y ) = (/) ) |
35 |
25 34
|
bitri |
|- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> ( ( a i^i x ) i^i y ) = (/) ) |
36 |
23 35
|
anbi12i |
|- ( ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
37 |
21 36
|
bitri |
|- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
38 |
37
|
exbii |
|- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
39 |
|
sbcex2 |
|- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) ) |
40 |
|
df-rex |
|- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
41 |
38 39 40
|
3bitr4i |
|- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
42 |
20 41
|
bitri |
|- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
43 |
18 42
|
imbi12i |
|- ( ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
44 |
4 43
|
bitri |
|- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |