Description: Virtual deduction proof of onfrALTlem5 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 is onfrALTlem5VD without virtual deductions and was automatically derived from onfrALTlem5VD .
1:: | |- a e.V |
2:1: | |- ( a i^i x ) e. V |
3:2: | |- ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) ) |
4:3: | |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> -. ( a i^i x ) = (/) ) |
5:: | |- ( ( a i^i x ) =/= (/) <-> -. ( a i^i x ) = (/) ) |
6:4,5: | |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) =/= (/) ) |
7:2: | |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) |
8:: | |- ( b =/= (/) <-> -. b = (/) ) |
9:8: | |- A. b ( b =/= (/) <-> -. b = (/) ) |
10:2,9: | |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) |
11:7,10: | |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. b =/= (/) ) |
12:6,11: | |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> ( a i^i x ) =/= (/) ) |
13:2: | |- ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) ) |
14:12,13: | |- ( ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) |
15:2: | |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) ) |
16:15,14: | |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) |
17:2: | |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) |
18:2: | |- [_ ( a i^i x ) / b ]_ b = ( a i^i x ) |
19:2: | |- [_ ( a i^i x ) / b ]_ y = y |
20:18,19: | |- ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) = ( ( a i^i x ) i^i y ) |
21:17,20: | |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( ( a i^i x ) i^i y ) |
22:2: | |- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) ) |
23:2: | |- [_ ( a i^i x ) / b ]_ (/) = (/) |
24:21,23: | |- ( [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) <-> ( ( a i^i x ) i^i y ) = (/) ) |
25:22,24: | |- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> ( ( a i^i x ) i^i y ) = (/) ) |
26:2: | |- ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) ) |
27:25,26: | |- ( ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
28:2: | |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) ) |
29:27,28: | |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
30:29: | |- A. y ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
31:30: | |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
32:: | |- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
33:31,32: | |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
34:2: | |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
35:33,34: | |- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
36:: | |- ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
37:36: | |- A. b ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
38:2,37: | |- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
39:35,38: | |- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
40:16,39: | |- ( ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
41:2: | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) ) |
qed:40,41: | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | onfrALTlem5VD | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |- a e. _V |
|
2 | 1 | inex1 | |- ( a i^i x ) e. _V |
3 | sbcimg | |- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) ) ) |
|
4 | 2 3 | e0a | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) ) |
5 | sbcan | |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) ) |
|
6 | sseq1 | |- ( b = ( a i^i x ) -> ( b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) ) ) |
|
7 | 2 6 | sbcie | |- ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) ) |
8 | df-ne | |- ( b =/= (/) <-> -. b = (/) ) |
|
9 | 8 | sbcbii | |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) |
10 | sbcng | |- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. -. b = (/) <-> -. [. ( a i^i x ) / b ]. b = (/) ) ) |
|
11 | 10 | bicomd | |- ( ( a i^i x ) e. _V -> ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) ) |
12 | 2 11 | e0a | |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) |
13 | eqsbc1 | |- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) ) ) |
|
14 | 2 13 | e0a | |- ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) ) |
15 | 14 | necon3bbii | |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) =/= (/) ) |
16 | 9 12 15 | 3bitr2i | |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> ( a i^i x ) =/= (/) ) |
17 | 7 16 | anbi12i | |- ( ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) |
18 | 5 17 | bitri | |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) |
19 | df-rex | |- ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
|
20 | 19 | sbcbii | |- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
21 | sbcan | |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) ) |
|
22 | sbcel2gv | |- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) ) ) |
|
23 | 2 22 | e0a | |- ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) ) |
24 | sbceqg | |- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) ) ) |
|
25 | 2 24 | e0a | |- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) ) |
26 | csbin | |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) |
|
27 | csbvarg | |- ( ( a i^i x ) e. _V -> [_ ( a i^i x ) / b ]_ b = ( a i^i x ) ) |
|
28 | 2 27 | e0a | |- [_ ( a i^i x ) / b ]_ b = ( a i^i x ) |
29 | csbconstg | |- ( ( a i^i x ) e. _V -> [_ ( a i^i x ) / b ]_ y = y ) |
|
30 | 2 29 | e0a | |- [_ ( a i^i x ) / b ]_ y = y |
31 | 28 30 | ineq12i | |- ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) = ( ( a i^i x ) i^i y ) |
32 | 26 31 | eqtri | |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( ( a i^i x ) i^i y ) |
33 | csb0 | |- [_ ( a i^i x ) / b ]_ (/) = (/) |
|
34 | 32 33 | eqeq12i | |- ( [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) <-> ( ( a i^i x ) i^i y ) = (/) ) |
35 | 25 34 | bitri | |- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> ( ( a i^i x ) i^i y ) = (/) ) |
36 | 23 35 | anbi12i | |- ( ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
37 | 21 36 | bitri | |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
38 | 37 | exbii | |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
39 | sbcex2 | |- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) ) |
|
40 | df-rex | |- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
|
41 | 38 39 40 | 3bitr4i | |- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
42 | 20 41 | bitri | |- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
43 | 18 42 | imbi12i | |- ( ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
44 | 4 43 | bitri | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |