Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
|- ( A e. On -> Ord A ) |
2 |
|
eloni |
|- ( B e. On -> Ord B ) |
3 |
|
ordin |
|- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. On /\ B e. On ) -> Ord ( A i^i B ) ) |
5 |
|
simpl |
|- ( ( A e. On /\ B e. On ) -> A e. On ) |
6 |
|
inex1g |
|- ( A e. On -> ( A i^i B ) e. _V ) |
7 |
|
elong |
|- ( ( A i^i B ) e. _V -> ( ( A i^i B ) e. On <-> Ord ( A i^i B ) ) ) |
8 |
5 6 7
|
3syl |
|- ( ( A e. On /\ B e. On ) -> ( ( A i^i B ) e. On <-> Ord ( A i^i B ) ) ) |
9 |
4 8
|
mpbird |
|- ( ( A e. On /\ B e. On ) -> ( A i^i B ) e. On ) |