Step |
Hyp |
Ref |
Expression |
1 |
|
ordon |
|- Ord On |
2 |
|
tz7.5 |
|- ( ( Ord On /\ A C_ On /\ A =/= (/) ) -> E. x e. A ( A i^i x ) = (/) ) |
3 |
1 2
|
mp3an1 |
|- ( ( A C_ On /\ A =/= (/) ) -> E. x e. A ( A i^i x ) = (/) ) |
4 |
|
ssel |
|- ( A C_ On -> ( x e. A -> x e. On ) ) |
5 |
4
|
imdistani |
|- ( ( A C_ On /\ x e. A ) -> ( A C_ On /\ x e. On ) ) |
6 |
|
ssel |
|- ( A C_ On -> ( z e. A -> z e. On ) ) |
7 |
|
ontri1 |
|- ( ( x e. On /\ z e. On ) -> ( x C_ z <-> -. z e. x ) ) |
8 |
|
ssel |
|- ( x C_ z -> ( y e. x -> y e. z ) ) |
9 |
7 8
|
syl6bir |
|- ( ( x e. On /\ z e. On ) -> ( -. z e. x -> ( y e. x -> y e. z ) ) ) |
10 |
9
|
ex |
|- ( x e. On -> ( z e. On -> ( -. z e. x -> ( y e. x -> y e. z ) ) ) ) |
11 |
6 10
|
sylan9 |
|- ( ( A C_ On /\ x e. On ) -> ( z e. A -> ( -. z e. x -> ( y e. x -> y e. z ) ) ) ) |
12 |
11
|
com4r |
|- ( y e. x -> ( ( A C_ On /\ x e. On ) -> ( z e. A -> ( -. z e. x -> y e. z ) ) ) ) |
13 |
12
|
imp31 |
|- ( ( ( y e. x /\ ( A C_ On /\ x e. On ) ) /\ z e. A ) -> ( -. z e. x -> y e. z ) ) |
14 |
13
|
ralimdva |
|- ( ( y e. x /\ ( A C_ On /\ x e. On ) ) -> ( A. z e. A -. z e. x -> A. z e. A y e. z ) ) |
15 |
|
disj |
|- ( ( A i^i x ) = (/) <-> A. z e. A -. z e. x ) |
16 |
|
vex |
|- y e. _V |
17 |
16
|
elint2 |
|- ( y e. |^| A <-> A. z e. A y e. z ) |
18 |
14 15 17
|
3imtr4g |
|- ( ( y e. x /\ ( A C_ On /\ x e. On ) ) -> ( ( A i^i x ) = (/) -> y e. |^| A ) ) |
19 |
5 18
|
sylan2 |
|- ( ( y e. x /\ ( A C_ On /\ x e. A ) ) -> ( ( A i^i x ) = (/) -> y e. |^| A ) ) |
20 |
19
|
exp32 |
|- ( y e. x -> ( A C_ On -> ( x e. A -> ( ( A i^i x ) = (/) -> y e. |^| A ) ) ) ) |
21 |
20
|
com4l |
|- ( A C_ On -> ( x e. A -> ( ( A i^i x ) = (/) -> ( y e. x -> y e. |^| A ) ) ) ) |
22 |
21
|
imp32 |
|- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> ( y e. x -> y e. |^| A ) ) |
23 |
22
|
ssrdv |
|- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> x C_ |^| A ) |
24 |
|
intss1 |
|- ( x e. A -> |^| A C_ x ) |
25 |
24
|
ad2antrl |
|- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> |^| A C_ x ) |
26 |
23 25
|
eqssd |
|- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> x = |^| A ) |
27 |
26
|
eleq1d |
|- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> ( x e. A <-> |^| A e. A ) ) |
28 |
27
|
biimpd |
|- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> ( x e. A -> |^| A e. A ) ) |
29 |
28
|
exp32 |
|- ( A C_ On -> ( x e. A -> ( ( A i^i x ) = (/) -> ( x e. A -> |^| A e. A ) ) ) ) |
30 |
29
|
com34 |
|- ( A C_ On -> ( x e. A -> ( x e. A -> ( ( A i^i x ) = (/) -> |^| A e. A ) ) ) ) |
31 |
30
|
pm2.43d |
|- ( A C_ On -> ( x e. A -> ( ( A i^i x ) = (/) -> |^| A e. A ) ) ) |
32 |
31
|
rexlimdv |
|- ( A C_ On -> ( E. x e. A ( A i^i x ) = (/) -> |^| A e. A ) ) |
33 |
3 32
|
syl5 |
|- ( A C_ On -> ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) ) |
34 |
33
|
anabsi5 |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |