Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
eleq1 |
|- ( |^| A = (/) -> ( |^| A e. _V <-> (/) e. _V ) ) |
3 |
1 2
|
mpbiri |
|- ( |^| A = (/) -> |^| A e. _V ) |
4 |
|
intex |
|- ( A =/= (/) <-> |^| A e. _V ) |
5 |
3 4
|
sylibr |
|- ( |^| A = (/) -> A =/= (/) ) |
6 |
|
onint |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |
7 |
5 6
|
sylan2 |
|- ( ( A C_ On /\ |^| A = (/) ) -> |^| A e. A ) |
8 |
|
eleq1 |
|- ( |^| A = (/) -> ( |^| A e. A <-> (/) e. A ) ) |
9 |
8
|
adantl |
|- ( ( A C_ On /\ |^| A = (/) ) -> ( |^| A e. A <-> (/) e. A ) ) |
10 |
7 9
|
mpbid |
|- ( ( A C_ On /\ |^| A = (/) ) -> (/) e. A ) |
11 |
10
|
ex |
|- ( A C_ On -> ( |^| A = (/) -> (/) e. A ) ) |
12 |
|
int0el |
|- ( (/) e. A -> |^| A = (/) ) |
13 |
11 12
|
impbid1 |
|- ( A C_ On -> ( |^| A = (/) <-> (/) e. A ) ) |