Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of TakeutiZaring p. 44. (Contributed by NM, 29-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | oninton | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |
|
2 | 1 | ex | |- ( A C_ On -> ( A =/= (/) -> |^| A e. A ) ) |
3 | ssel | |- ( A C_ On -> ( |^| A e. A -> |^| A e. On ) ) |
|
4 | 2 3 | syld | |- ( A C_ On -> ( A =/= (/) -> |^| A e. On ) ) |
5 | 4 | imp | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |