| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intex |
|- ( { x e. On | ph } =/= (/) <-> |^| { x e. On | ph } e. _V ) |
| 2 |
|
ssrab2 |
|- { x e. On | ph } C_ On |
| 3 |
|
oninton |
|- ( ( { x e. On | ph } C_ On /\ { x e. On | ph } =/= (/) ) -> |^| { x e. On | ph } e. On ) |
| 4 |
2 3
|
mpan |
|- ( { x e. On | ph } =/= (/) -> |^| { x e. On | ph } e. On ) |
| 5 |
1 4
|
sylbir |
|- ( |^| { x e. On | ph } e. _V -> |^| { x e. On | ph } e. On ) |
| 6 |
|
elex |
|- ( |^| { x e. On | ph } e. On -> |^| { x e. On | ph } e. _V ) |
| 7 |
5 6
|
impbii |
|- ( |^| { x e. On | ph } e. _V <-> |^| { x e. On | ph } e. On ) |