Step |
Hyp |
Ref |
Expression |
1 |
|
intex |
|- ( { x e. On | ph } =/= (/) <-> |^| { x e. On | ph } e. _V ) |
2 |
|
ssrab2 |
|- { x e. On | ph } C_ On |
3 |
|
oninton |
|- ( ( { x e. On | ph } C_ On /\ { x e. On | ph } =/= (/) ) -> |^| { x e. On | ph } e. On ) |
4 |
2 3
|
mpan |
|- ( { x e. On | ph } =/= (/) -> |^| { x e. On | ph } e. On ) |
5 |
1 4
|
sylbir |
|- ( |^| { x e. On | ph } e. _V -> |^| { x e. On | ph } e. On ) |
6 |
|
elex |
|- ( |^| { x e. On | ph } e. On -> |^| { x e. On | ph } e. _V ) |
7 |
5 6
|
impbii |
|- ( |^| { x e. On | ph } e. _V <-> |^| { x e. On | ph } e. On ) |