Description: An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onintrab2 | |- ( E. x e. On ph <-> |^| { x e. On | ph } e. On ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | intexrab |  |-  ( E. x e. On ph <-> |^| { x e. On | ph } e. _V ) | |
| 2 | onintrab |  |-  ( |^| { x e. On | ph } e. _V <-> |^| { x e. On | ph } e. On ) | |
| 3 | 1 2 | bitri |  |-  ( E. x e. On ph <-> |^| { x e. On | ph } e. On ) |