| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif |  |-  ( x e. ( A \ suc B ) <-> ( x e. A /\ -. x e. suc B ) ) | 
						
							| 2 |  | ssel2 |  |-  ( ( A C_ On /\ x e. A ) -> x e. On ) | 
						
							| 3 |  | ontri1 |  |-  ( ( x e. On /\ B e. On ) -> ( x C_ B <-> -. B e. x ) ) | 
						
							| 4 |  | onsssuc |  |-  ( ( x e. On /\ B e. On ) -> ( x C_ B <-> x e. suc B ) ) | 
						
							| 5 | 3 4 | bitr3d |  |-  ( ( x e. On /\ B e. On ) -> ( -. B e. x <-> x e. suc B ) ) | 
						
							| 6 | 5 | con1bid |  |-  ( ( x e. On /\ B e. On ) -> ( -. x e. suc B <-> B e. x ) ) | 
						
							| 7 | 2 6 | sylan |  |-  ( ( ( A C_ On /\ x e. A ) /\ B e. On ) -> ( -. x e. suc B <-> B e. x ) ) | 
						
							| 8 | 7 | biimpd |  |-  ( ( ( A C_ On /\ x e. A ) /\ B e. On ) -> ( -. x e. suc B -> B e. x ) ) | 
						
							| 9 | 8 | exp31 |  |-  ( A C_ On -> ( x e. A -> ( B e. On -> ( -. x e. suc B -> B e. x ) ) ) ) | 
						
							| 10 | 9 | com23 |  |-  ( A C_ On -> ( B e. On -> ( x e. A -> ( -. x e. suc B -> B e. x ) ) ) ) | 
						
							| 11 | 10 | imp4b |  |-  ( ( A C_ On /\ B e. On ) -> ( ( x e. A /\ -. x e. suc B ) -> B e. x ) ) | 
						
							| 12 | 1 11 | biimtrid |  |-  ( ( A C_ On /\ B e. On ) -> ( x e. ( A \ suc B ) -> B e. x ) ) | 
						
							| 13 | 12 | ralrimiv |  |-  ( ( A C_ On /\ B e. On ) -> A. x e. ( A \ suc B ) B e. x ) | 
						
							| 14 |  | elintg |  |-  ( B e. On -> ( B e. |^| ( A \ suc B ) <-> A. x e. ( A \ suc B ) B e. x ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( A C_ On /\ B e. On ) -> ( B e. |^| ( A \ suc B ) <-> A. x e. ( A \ suc B ) B e. x ) ) | 
						
							| 16 | 13 15 | mpbird |  |-  ( ( A C_ On /\ B e. On ) -> B e. |^| ( A \ suc B ) ) |