| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsn |
|- ( x e. ( A \ { |^| A } ) <-> ( x e. A /\ x =/= |^| A ) ) |
| 2 |
|
onnmin |
|- ( ( A C_ On /\ x e. A ) -> -. x e. |^| A ) |
| 3 |
2
|
adantlr |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> -. x e. |^| A ) |
| 4 |
|
oninton |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
| 5 |
|
ssel2 |
|- ( ( A C_ On /\ x e. A ) -> x e. On ) |
| 6 |
5
|
adantlr |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> x e. On ) |
| 7 |
|
ontri1 |
|- ( ( |^| A e. On /\ x e. On ) -> ( |^| A C_ x <-> -. x e. |^| A ) ) |
| 8 |
|
onsseleq |
|- ( ( |^| A e. On /\ x e. On ) -> ( |^| A C_ x <-> ( |^| A e. x \/ |^| A = x ) ) ) |
| 9 |
7 8
|
bitr3d |
|- ( ( |^| A e. On /\ x e. On ) -> ( -. x e. |^| A <-> ( |^| A e. x \/ |^| A = x ) ) ) |
| 10 |
4 6 9
|
syl2an2r |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( -. x e. |^| A <-> ( |^| A e. x \/ |^| A = x ) ) ) |
| 11 |
3 10
|
mpbid |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( |^| A e. x \/ |^| A = x ) ) |
| 12 |
11
|
ord |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( -. |^| A e. x -> |^| A = x ) ) |
| 13 |
|
eqcom |
|- ( |^| A = x <-> x = |^| A ) |
| 14 |
12 13
|
imbitrdi |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( -. |^| A e. x -> x = |^| A ) ) |
| 15 |
14
|
necon1ad |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( x =/= |^| A -> |^| A e. x ) ) |
| 16 |
15
|
expimpd |
|- ( ( A C_ On /\ A =/= (/) ) -> ( ( x e. A /\ x =/= |^| A ) -> |^| A e. x ) ) |
| 17 |
1 16
|
biimtrid |
|- ( ( A C_ On /\ A =/= (/) ) -> ( x e. ( A \ { |^| A } ) -> |^| A e. x ) ) |
| 18 |
17
|
ralrimiv |
|- ( ( A C_ On /\ A =/= (/) ) -> A. x e. ( A \ { |^| A } ) |^| A e. x ) |
| 19 |
|
intex |
|- ( A =/= (/) <-> |^| A e. _V ) |
| 20 |
|
elintg |
|- ( |^| A e. _V -> ( |^| A e. |^| ( A \ { |^| A } ) <-> A. x e. ( A \ { |^| A } ) |^| A e. x ) ) |
| 21 |
19 20
|
sylbi |
|- ( A =/= (/) -> ( |^| A e. |^| ( A \ { |^| A } ) <-> A. x e. ( A \ { |^| A } ) |^| A e. x ) ) |
| 22 |
21
|
adantl |
|- ( ( A C_ On /\ A =/= (/) ) -> ( |^| A e. |^| ( A \ { |^| A } ) <-> A. x e. ( A \ { |^| A } ) |^| A e. x ) ) |
| 23 |
18 22
|
mpbird |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. |^| ( A \ { |^| A } ) ) |