| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intss1 |
|- ( B e. A -> |^| A C_ B ) |
| 2 |
1
|
adantl |
|- ( ( A C_ On /\ B e. A ) -> |^| A C_ B ) |
| 3 |
|
ne0i |
|- ( B e. A -> A =/= (/) ) |
| 4 |
|
oninton |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
| 5 |
3 4
|
sylan2 |
|- ( ( A C_ On /\ B e. A ) -> |^| A e. On ) |
| 6 |
|
ssel2 |
|- ( ( A C_ On /\ B e. A ) -> B e. On ) |
| 7 |
|
ontri1 |
|- ( ( |^| A e. On /\ B e. On ) -> ( |^| A C_ B <-> -. B e. |^| A ) ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ( A C_ On /\ B e. A ) -> ( |^| A C_ B <-> -. B e. |^| A ) ) |
| 9 |
2 8
|
mpbid |
|- ( ( A C_ On /\ B e. A ) -> -. B e. |^| A ) |