Step |
Hyp |
Ref |
Expression |
1 |
|
intss1 |
|- ( B e. A -> |^| A C_ B ) |
2 |
1
|
adantl |
|- ( ( A C_ On /\ B e. A ) -> |^| A C_ B ) |
3 |
|
ne0i |
|- ( B e. A -> A =/= (/) ) |
4 |
|
oninton |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
5 |
3 4
|
sylan2 |
|- ( ( A C_ On /\ B e. A ) -> |^| A e. On ) |
6 |
|
ssel2 |
|- ( ( A C_ On /\ B e. A ) -> B e. On ) |
7 |
|
ontri1 |
|- ( ( |^| A e. On /\ B e. On ) -> ( |^| A C_ B <-> -. B e. |^| A ) ) |
8 |
5 6 7
|
syl2anc |
|- ( ( A C_ On /\ B e. A ) -> ( |^| A C_ B <-> -. B e. |^| A ) ) |
9 |
2 8
|
mpbid |
|- ( ( A C_ On /\ B e. A ) -> -. B e. |^| A ) |