| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onnminsb.1 |
|- ( x = A -> ( ph <-> ps ) ) |
| 2 |
1
|
elrab |
|- ( A e. { x e. On | ph } <-> ( A e. On /\ ps ) ) |
| 3 |
|
ssrab2 |
|- { x e. On | ph } C_ On |
| 4 |
|
onnmin |
|- ( ( { x e. On | ph } C_ On /\ A e. { x e. On | ph } ) -> -. A e. |^| { x e. On | ph } ) |
| 5 |
3 4
|
mpan |
|- ( A e. { x e. On | ph } -> -. A e. |^| { x e. On | ph } ) |
| 6 |
2 5
|
sylbir |
|- ( ( A e. On /\ ps ) -> -. A e. |^| { x e. On | ph } ) |
| 7 |
6
|
ex |
|- ( A e. On -> ( ps -> -. A e. |^| { x e. On | ph } ) ) |
| 8 |
7
|
con2d |
|- ( A e. On -> ( A e. |^| { x e. On | ph } -> -. ps ) ) |