Step |
Hyp |
Ref |
Expression |
1 |
|
php5 |
|- ( B e. _om -> -. B ~~ suc B ) |
2 |
1
|
ad2antlr |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> -. B ~~ suc B ) |
3 |
|
enen1 |
|- ( A ~~ B -> ( A ~~ suc B <-> B ~~ suc B ) ) |
4 |
3
|
adantl |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( A ~~ suc B <-> B ~~ suc B ) ) |
5 |
2 4
|
mtbird |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> -. A ~~ suc B ) |
6 |
|
peano2 |
|- ( B e. _om -> suc B e. _om ) |
7 |
|
sssucid |
|- B C_ suc B |
8 |
|
ssdomg |
|- ( suc B e. _om -> ( B C_ suc B -> B ~<_ suc B ) ) |
9 |
6 7 8
|
mpisyl |
|- ( B e. _om -> B ~<_ suc B ) |
10 |
|
endomtr |
|- ( ( A ~~ B /\ B ~<_ suc B ) -> A ~<_ suc B ) |
11 |
9 10
|
sylan2 |
|- ( ( A ~~ B /\ B e. _om ) -> A ~<_ suc B ) |
12 |
11
|
ancoms |
|- ( ( B e. _om /\ A ~~ B ) -> A ~<_ suc B ) |
13 |
12
|
a1d |
|- ( ( B e. _om /\ A ~~ B ) -> ( _om C_ A -> A ~<_ suc B ) ) |
14 |
13
|
adantll |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( _om C_ A -> A ~<_ suc B ) ) |
15 |
|
ssel |
|- ( _om C_ A -> ( B e. _om -> B e. A ) ) |
16 |
15
|
com12 |
|- ( B e. _om -> ( _om C_ A -> B e. A ) ) |
17 |
16
|
adantr |
|- ( ( B e. _om /\ A e. On ) -> ( _om C_ A -> B e. A ) ) |
18 |
|
eloni |
|- ( A e. On -> Ord A ) |
19 |
|
ordelsuc |
|- ( ( B e. _om /\ Ord A ) -> ( B e. A <-> suc B C_ A ) ) |
20 |
18 19
|
sylan2 |
|- ( ( B e. _om /\ A e. On ) -> ( B e. A <-> suc B C_ A ) ) |
21 |
17 20
|
sylibd |
|- ( ( B e. _om /\ A e. On ) -> ( _om C_ A -> suc B C_ A ) ) |
22 |
|
ssdomg |
|- ( A e. On -> ( suc B C_ A -> suc B ~<_ A ) ) |
23 |
22
|
adantl |
|- ( ( B e. _om /\ A e. On ) -> ( suc B C_ A -> suc B ~<_ A ) ) |
24 |
21 23
|
syld |
|- ( ( B e. _om /\ A e. On ) -> ( _om C_ A -> suc B ~<_ A ) ) |
25 |
24
|
ancoms |
|- ( ( A e. On /\ B e. _om ) -> ( _om C_ A -> suc B ~<_ A ) ) |
26 |
25
|
adantr |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( _om C_ A -> suc B ~<_ A ) ) |
27 |
14 26
|
jcad |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( _om C_ A -> ( A ~<_ suc B /\ suc B ~<_ A ) ) ) |
28 |
|
sbth |
|- ( ( A ~<_ suc B /\ suc B ~<_ A ) -> A ~~ suc B ) |
29 |
27 28
|
syl6 |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( _om C_ A -> A ~~ suc B ) ) |
30 |
5 29
|
mtod |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> -. _om C_ A ) |
31 |
|
ordom |
|- Ord _om |
32 |
|
ordtri1 |
|- ( ( Ord _om /\ Ord A ) -> ( _om C_ A <-> -. A e. _om ) ) |
33 |
31 18 32
|
sylancr |
|- ( A e. On -> ( _om C_ A <-> -. A e. _om ) ) |
34 |
33
|
con2bid |
|- ( A e. On -> ( A e. _om <-> -. _om C_ A ) ) |
35 |
34
|
ad2antrr |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( A e. _om <-> -. _om C_ A ) ) |
36 |
30 35
|
mpbird |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> A e. _om ) |
37 |
|
simplr |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> B e. _om ) |
38 |
36 37
|
jca |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( A e. _om /\ B e. _om ) ) |
39 |
|
nneneq |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |
40 |
39
|
biimpa |
|- ( ( ( A e. _om /\ B e. _om ) /\ A ~~ B ) -> A = B ) |
41 |
38 40
|
sylancom |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> A = B ) |
42 |
41
|
ex |
|- ( ( A e. On /\ B e. _om ) -> ( A ~~ B -> A = B ) ) |
43 |
|
eqeng |
|- ( A e. On -> ( A = B -> A ~~ B ) ) |
44 |
43
|
adantr |
|- ( ( A e. On /\ B e. _om ) -> ( A = B -> A ~~ B ) ) |
45 |
42 44
|
impbid |
|- ( ( A e. On /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |