Step |
Hyp |
Ref |
Expression |
1 |
|
endom |
|- ( A ~~ B -> A ~<_ B ) |
2 |
|
nnfi |
|- ( B e. _om -> B e. Fin ) |
3 |
|
domfi |
|- ( ( B e. Fin /\ A ~<_ B ) -> A e. Fin ) |
4 |
|
simpr |
|- ( ( B e. Fin /\ A ~<_ B ) -> A ~<_ B ) |
5 |
3 4
|
jca |
|- ( ( B e. Fin /\ A ~<_ B ) -> ( A e. Fin /\ A ~<_ B ) ) |
6 |
|
domnsymfi |
|- ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A ) |
7 |
6
|
ex |
|- ( A e. Fin -> ( A ~<_ B -> -. B ~< A ) ) |
8 |
|
php3 |
|- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
9 |
8
|
ex |
|- ( A e. Fin -> ( B C. A -> B ~< A ) ) |
10 |
7 9
|
nsyld |
|- ( A e. Fin -> ( A ~<_ B -> -. B C. A ) ) |
11 |
10
|
adantl |
|- ( ( B e. _om /\ A e. Fin ) -> ( A ~<_ B -> -. B C. A ) ) |
12 |
11
|
expimpd |
|- ( B e. _om -> ( ( A e. Fin /\ A ~<_ B ) -> -. B C. A ) ) |
13 |
5 12
|
syl5 |
|- ( B e. _om -> ( ( B e. Fin /\ A ~<_ B ) -> -. B C. A ) ) |
14 |
2 13
|
mpand |
|- ( B e. _om -> ( A ~<_ B -> -. B C. A ) ) |
15 |
14
|
adantl |
|- ( ( A e. On /\ B e. _om ) -> ( A ~<_ B -> -. B C. A ) ) |
16 |
|
eloni |
|- ( A e. On -> Ord A ) |
17 |
|
nnord |
|- ( B e. _om -> Ord B ) |
18 |
|
ordtri1 |
|- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |
19 |
|
ordelpss |
|- ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) ) |
20 |
19
|
ancoms |
|- ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) ) |
21 |
20
|
notbid |
|- ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. B C. A ) ) |
22 |
18 21
|
bitrd |
|- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B C. A ) ) |
23 |
16 17 22
|
syl2an |
|- ( ( A e. On /\ B e. _om ) -> ( A C_ B <-> -. B C. A ) ) |
24 |
15 23
|
sylibrd |
|- ( ( A e. On /\ B e. _om ) -> ( A ~<_ B -> A C_ B ) ) |
25 |
1 24
|
syl5 |
|- ( ( A e. On /\ B e. _om ) -> ( A ~~ B -> A C_ B ) ) |
26 |
25
|
3impia |
|- ( ( A e. On /\ B e. _om /\ A ~~ B ) -> A C_ B ) |
27 |
|
ensymfib |
|- ( B e. Fin -> ( B ~~ A <-> A ~~ B ) ) |
28 |
2 27
|
syl |
|- ( B e. _om -> ( B ~~ A <-> A ~~ B ) ) |
29 |
|
endom |
|- ( B ~~ A -> B ~<_ A ) |
30 |
28 29
|
syl6bir |
|- ( B e. _om -> ( A ~~ B -> B ~<_ A ) ) |
31 |
30
|
imp |
|- ( ( B e. _om /\ A ~~ B ) -> B ~<_ A ) |
32 |
31
|
3adant1 |
|- ( ( A e. On /\ B e. _om /\ A ~~ B ) -> B ~<_ A ) |
33 |
|
nndomog |
|- ( ( B e. _om /\ A e. On ) -> ( B ~<_ A <-> B C_ A ) ) |
34 |
33
|
ancoms |
|- ( ( A e. On /\ B e. _om ) -> ( B ~<_ A <-> B C_ A ) ) |
35 |
34
|
biimp3a |
|- ( ( A e. On /\ B e. _om /\ B ~<_ A ) -> B C_ A ) |
36 |
32 35
|
syld3an3 |
|- ( ( A e. On /\ B e. _om /\ A ~~ B ) -> B C_ A ) |
37 |
26 36
|
eqssd |
|- ( ( A e. On /\ B e. _om /\ A ~~ B ) -> A = B ) |
38 |
37
|
3expia |
|- ( ( A e. On /\ B e. _om ) -> ( A ~~ B -> A = B ) ) |
39 |
|
enrefnn |
|- ( B e. _om -> B ~~ B ) |
40 |
|
breq1 |
|- ( A = B -> ( A ~~ B <-> B ~~ B ) ) |
41 |
39 40
|
syl5ibrcom |
|- ( B e. _om -> ( A = B -> A ~~ B ) ) |
42 |
41
|
adantl |
|- ( ( A e. On /\ B e. _om ) -> ( A = B -> A ~~ B ) ) |
43 |
38 42
|
impbid |
|- ( ( A e. On /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |