| Step |
Hyp |
Ref |
Expression |
| 1 |
|
php5 |
|- ( B e. _om -> -. B ~~ suc B ) |
| 2 |
1
|
ad2antlr |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> -. B ~~ suc B ) |
| 3 |
|
enen1 |
|- ( A ~~ B -> ( A ~~ suc B <-> B ~~ suc B ) ) |
| 4 |
3
|
adantl |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( A ~~ suc B <-> B ~~ suc B ) ) |
| 5 |
2 4
|
mtbird |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> -. A ~~ suc B ) |
| 6 |
|
peano2 |
|- ( B e. _om -> suc B e. _om ) |
| 7 |
|
sssucid |
|- B C_ suc B |
| 8 |
|
ssdomg |
|- ( suc B e. _om -> ( B C_ suc B -> B ~<_ suc B ) ) |
| 9 |
6 7 8
|
mpisyl |
|- ( B e. _om -> B ~<_ suc B ) |
| 10 |
|
endomtr |
|- ( ( A ~~ B /\ B ~<_ suc B ) -> A ~<_ suc B ) |
| 11 |
9 10
|
sylan2 |
|- ( ( A ~~ B /\ B e. _om ) -> A ~<_ suc B ) |
| 12 |
11
|
ancoms |
|- ( ( B e. _om /\ A ~~ B ) -> A ~<_ suc B ) |
| 13 |
12
|
a1d |
|- ( ( B e. _om /\ A ~~ B ) -> ( _om C_ A -> A ~<_ suc B ) ) |
| 14 |
13
|
adantll |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( _om C_ A -> A ~<_ suc B ) ) |
| 15 |
|
ssel |
|- ( _om C_ A -> ( B e. _om -> B e. A ) ) |
| 16 |
15
|
com12 |
|- ( B e. _om -> ( _om C_ A -> B e. A ) ) |
| 17 |
16
|
adantr |
|- ( ( B e. _om /\ A e. On ) -> ( _om C_ A -> B e. A ) ) |
| 18 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 19 |
|
ordelsuc |
|- ( ( B e. _om /\ Ord A ) -> ( B e. A <-> suc B C_ A ) ) |
| 20 |
18 19
|
sylan2 |
|- ( ( B e. _om /\ A e. On ) -> ( B e. A <-> suc B C_ A ) ) |
| 21 |
17 20
|
sylibd |
|- ( ( B e. _om /\ A e. On ) -> ( _om C_ A -> suc B C_ A ) ) |
| 22 |
|
ssdomg |
|- ( A e. On -> ( suc B C_ A -> suc B ~<_ A ) ) |
| 23 |
22
|
adantl |
|- ( ( B e. _om /\ A e. On ) -> ( suc B C_ A -> suc B ~<_ A ) ) |
| 24 |
21 23
|
syld |
|- ( ( B e. _om /\ A e. On ) -> ( _om C_ A -> suc B ~<_ A ) ) |
| 25 |
24
|
ancoms |
|- ( ( A e. On /\ B e. _om ) -> ( _om C_ A -> suc B ~<_ A ) ) |
| 26 |
25
|
adantr |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( _om C_ A -> suc B ~<_ A ) ) |
| 27 |
14 26
|
jcad |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( _om C_ A -> ( A ~<_ suc B /\ suc B ~<_ A ) ) ) |
| 28 |
|
sbth |
|- ( ( A ~<_ suc B /\ suc B ~<_ A ) -> A ~~ suc B ) |
| 29 |
27 28
|
syl6 |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( _om C_ A -> A ~~ suc B ) ) |
| 30 |
5 29
|
mtod |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> -. _om C_ A ) |
| 31 |
|
ordom |
|- Ord _om |
| 32 |
|
ordtri1 |
|- ( ( Ord _om /\ Ord A ) -> ( _om C_ A <-> -. A e. _om ) ) |
| 33 |
31 18 32
|
sylancr |
|- ( A e. On -> ( _om C_ A <-> -. A e. _om ) ) |
| 34 |
33
|
con2bid |
|- ( A e. On -> ( A e. _om <-> -. _om C_ A ) ) |
| 35 |
34
|
ad2antrr |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( A e. _om <-> -. _om C_ A ) ) |
| 36 |
30 35
|
mpbird |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> A e. _om ) |
| 37 |
|
simplr |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> B e. _om ) |
| 38 |
36 37
|
jca |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> ( A e. _om /\ B e. _om ) ) |
| 39 |
|
nneneq |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |
| 40 |
39
|
biimpa |
|- ( ( ( A e. _om /\ B e. _om ) /\ A ~~ B ) -> A = B ) |
| 41 |
38 40
|
sylancom |
|- ( ( ( A e. On /\ B e. _om ) /\ A ~~ B ) -> A = B ) |
| 42 |
41
|
ex |
|- ( ( A e. On /\ B e. _om ) -> ( A ~~ B -> A = B ) ) |
| 43 |
|
eqeng |
|- ( A e. On -> ( A = B -> A ~~ B ) ) |
| 44 |
43
|
adantr |
|- ( ( A e. On /\ B e. _om ) -> ( A = B -> A ~~ B ) ) |
| 45 |
42 44
|
impbid |
|- ( ( A e. On /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |