Metamath Proof Explorer


Theorem onordi

Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994)

Ref Expression
Hypothesis on.1
|- A e. On
Assertion onordi
|- Ord A

Proof

Step Hyp Ref Expression
1 on.1
 |-  A e. On
2 eloni
 |-  ( A e. On -> Ord A )
3 1 2 ax-mp
 |-  Ord A