Metamath Proof Explorer


Theorem onpsssuc

Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion onpsssuc
|- ( A e. On -> A C. suc A )

Proof

Step Hyp Ref Expression
1 sucidg
 |-  ( A e. On -> A e. suc A )
2 eloni
 |-  ( A e. On -> Ord A )
3 ordsuc
 |-  ( Ord A <-> Ord suc A )
4 2 3 sylib
 |-  ( A e. On -> Ord suc A )
5 ordelpss
 |-  ( ( Ord A /\ Ord suc A ) -> ( A e. suc A <-> A C. suc A ) )
6 2 4 5 syl2anc
 |-  ( A e. On -> ( A e. suc A <-> A C. suc A ) )
7 1 6 mpbid
 |-  ( A e. On -> A C. suc A )