Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onpsssuc | |- ( A e. On -> A C. suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg | |- ( A e. On -> A e. suc A ) |
|
| 2 | eloni | |- ( A e. On -> Ord A ) |
|
| 3 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 4 | 2 3 | sylib | |- ( A e. On -> Ord suc A ) |
| 5 | ordelpss | |- ( ( Ord A /\ Ord suc A ) -> ( A e. suc A <-> A C. suc A ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( A e. On -> ( A e. suc A <-> A C. suc A ) ) |
| 7 | 1 6 | mpbid | |- ( A e. On -> A C. suc A ) |