| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ontri1 |  |-  ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( A e. On /\ B e. On ) -> ( B C_ A <-> -. A e. B ) ) | 
						
							| 3 |  | inex1g |  |-  ( A e. On -> ( A i^i C ) e. _V ) | 
						
							| 4 |  | ssrin |  |-  ( B C_ A -> ( B i^i C ) C_ ( A i^i C ) ) | 
						
							| 5 |  | ssdomg |  |-  ( ( A i^i C ) e. _V -> ( ( B i^i C ) C_ ( A i^i C ) -> ( B i^i C ) ~<_ ( A i^i C ) ) ) | 
						
							| 6 | 3 4 5 | syl2im |  |-  ( A e. On -> ( B C_ A -> ( B i^i C ) ~<_ ( A i^i C ) ) ) | 
						
							| 7 |  | domnsym |  |-  ( ( B i^i C ) ~<_ ( A i^i C ) -> -. ( A i^i C ) ~< ( B i^i C ) ) | 
						
							| 8 | 6 7 | syl6 |  |-  ( A e. On -> ( B C_ A -> -. ( A i^i C ) ~< ( B i^i C ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. On /\ B e. On ) -> ( B C_ A -> -. ( A i^i C ) ~< ( B i^i C ) ) ) | 
						
							| 10 | 2 9 | sylbird |  |-  ( ( A e. On /\ B e. On ) -> ( -. A e. B -> -. ( A i^i C ) ~< ( B i^i C ) ) ) | 
						
							| 11 | 10 | con4d |  |-  ( ( A e. On /\ B e. On ) -> ( ( A i^i C ) ~< ( B i^i C ) -> A e. B ) ) | 
						
							| 12 | 11 | 3impia |  |-  ( ( A e. On /\ B e. On /\ ( A i^i C ) ~< ( B i^i C ) ) -> A e. B ) |