Step |
Hyp |
Ref |
Expression |
1 |
|
ontri1 |
|- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) |
2 |
1
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( B C_ A <-> -. A e. B ) ) |
3 |
|
inex1g |
|- ( A e. On -> ( A i^i C ) e. _V ) |
4 |
|
ssrin |
|- ( B C_ A -> ( B i^i C ) C_ ( A i^i C ) ) |
5 |
|
ssdomg |
|- ( ( A i^i C ) e. _V -> ( ( B i^i C ) C_ ( A i^i C ) -> ( B i^i C ) ~<_ ( A i^i C ) ) ) |
6 |
3 4 5
|
syl2im |
|- ( A e. On -> ( B C_ A -> ( B i^i C ) ~<_ ( A i^i C ) ) ) |
7 |
|
domnsym |
|- ( ( B i^i C ) ~<_ ( A i^i C ) -> -. ( A i^i C ) ~< ( B i^i C ) ) |
8 |
6 7
|
syl6 |
|- ( A e. On -> ( B C_ A -> -. ( A i^i C ) ~< ( B i^i C ) ) ) |
9 |
8
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( B C_ A -> -. ( A i^i C ) ~< ( B i^i C ) ) ) |
10 |
2 9
|
sylbird |
|- ( ( A e. On /\ B e. On ) -> ( -. A e. B -> -. ( A i^i C ) ~< ( B i^i C ) ) ) |
11 |
10
|
con4d |
|- ( ( A e. On /\ B e. On ) -> ( ( A i^i C ) ~< ( B i^i C ) -> A e. B ) ) |
12 |
11
|
3impia |
|- ( ( A e. On /\ B e. On /\ ( A i^i C ) ~< ( B i^i C ) ) -> A e. B ) |