Metamath Proof Explorer


Theorem onsseli

Description: Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995)

Ref Expression
Hypotheses on.1
|- A e. On
on.2
|- B e. On
Assertion onsseli
|- ( A C_ B <-> ( A e. B \/ A = B ) )

Proof

Step Hyp Ref Expression
1 on.1
 |-  A e. On
2 on.2
 |-  B e. On
3 onsseleq
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) )
4 1 2 3 mp2an
 |-  ( A C_ B <-> ( A e. B \/ A = B ) )