Description: Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | on.1 | |- A e. On | |
| on.2 | |- B e. On | ||
| Assertion | onsseli | |- ( A C_ B <-> ( A e. B \/ A = B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | on.1 | |- A e. On | |
| 2 | on.2 | |- B e. On | |
| 3 | onsseleq | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) | |
| 4 | 1 2 3 | mp2an | |- ( A C_ B <-> ( A e. B \/ A = B ) ) |