Description: Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | on.1 | |- A e. On |
|
on.2 | |- B e. On |
||
Assertion | onsseli | |- ( A C_ B <-> ( A e. B \/ A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | |- A e. On |
|
2 | on.2 | |- B e. On |
|
3 | onsseleq | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( A C_ B <-> ( A e. B \/ A = B ) ) |