Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | on.1 | |- A e. On |
|
Assertion | onssneli | |- ( A C_ B -> -. B e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | |- A e. On |
|
2 | ssel | |- ( A C_ B -> ( B e. A -> B e. B ) ) |
|
3 | 1 | oneli | |- ( B e. A -> B e. On ) |
4 | eloni | |- ( B e. On -> Ord B ) |
|
5 | ordirr | |- ( Ord B -> -. B e. B ) |
|
6 | 3 4 5 | 3syl | |- ( B e. A -> -. B e. B ) |
7 | 2 6 | nsyli | |- ( A C_ B -> ( B e. A -> -. B e. A ) ) |
8 | 7 | pm2.01d | |- ( A C_ B -> -. B e. A ) |